Abstract
Abstract
Background
Ketamine has been reported to cause neonatal neurotoxicity in a variety of developing animal models. Various studies have been conducted to study the mechanism of neurotoxicity for general anesthetic use during the neonatal period. Previous experiments have suggested that developmentally generated granule neurons in the hippocampus dentate gyrus (DG) supported hippocampus-dependent memory. Therefore, this study aimed to investigate whether ketamine affects the functional integration of developmentally generated granule neurons in the DG. For this purpose,the postnatal day 7 (PND-7) Sprague-Dawley (SD) rats were divided into the control group and the ketamine group (rats who received 4 injections of 40 mg/kg ketamine at 1 h intervals). To label dividing cells, BrdU was administered for three consecutive days after the ketamine exposure; NeuN+/BrdU+cells were observed by using immunofluorescence. To evaluate the developmentally generated granule neurons that support hippocampus-dependent memory, spatial reference memory was tested by using Morris Water Maze at 3 months old, after which the immunofluorescence was used to detect c-Fos expression in the NeuN+/BrdU+ cells. The expression of caspase-3 was measured by western blot to detect the apoptosis in the hippocampal DG.
Results
The present results showed that the neonatal ketamine exposure did not influence the survival rate of developmentally generated granule neurons at 2 and 3 months old, but ketamine interfered with the integration of these neurons into the hippocampal DG neural circuits and caused a deficit in hippocampal-dependent spatial reference memory tasks.
Conclusions
In summary, these findings may promote more studies to investigate the neurotoxicity of ketamine in the developing brain.
Funder
Key young medical research program of Jiangsu Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献