Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina

Author:

Islam Md Shahidul,Haque Md Samiul,Islam Mohammad Moinul,Emdad Emdadul Mannan,Halim Abdul,Hossen Quazi Md Mosaddeque,Hossain Md Zakir,Ahmed Borhan,Rahim Sifatur,Rahman Md Sharifur,Alam Md Monjurul,Hou Shaobin,Wan Xuehua,Saito Jennifer A,Alam Maqsudul

Abstract

Abstract Background Macrophomina phaseolina is one of the most destructive necrotrophic fungal pathogens that infect more than 500 plant species throughout the world. It can grow rapidly in infected plants and subsequently produces a large amount of sclerotia that plugs the vessels, resulting in wilting of the plant. Results We sequenced and assembled ~49 Mb into 15 super-scaffolds covering 92.83% of the M. phaseolina genome. We predict 14,249 open reading frames (ORFs) of which 9,934 are validated by the transcriptome. This phytopathogen has an abundance of secreted oxidases, peroxidases, and hydrolytic enzymes for degrading cell wall polysaccharides and lignocelluloses to penetrate into the host tissue. To overcome the host plant defense response, M. phaseolina encodes a significant number of P450s, MFS type membrane transporters, glycosidases, transposases, and secondary metabolites in comparison to all sequenced ascomycete species. A strikingly distinct set of carbohydrate esterases (CE) are present in M. phaseolina, with the CE9 and CE10 families remarkably higher than any other fungi. The phenotypic microarray data indicates that M. phaseolina can adapt to a wide range of osmotic and pH environments. As a broad host range pathogen, M. phaseolina possesses a large number of pathogen-host interaction genes including those for adhesion, signal transduction, cell wall breakdown, purine biosynthesis, and potent mycotoxin patulin. Conclusions The M. phaseolina genome provides a framework of the infection process at the cytological and molecular level which uses a diverse arsenal of enzymatic and toxin tools to destroy the host plants. Further understanding of the M. phaseolina genome-based plant-pathogen interactions will be instrumental in designing rational strategies for disease control, essential to ensuring global agricultural crop production and security.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference80 articles.

1. Wyllie TD: Charcoal rot of soybean-current status. Soybean Diseases of the North Central Region. Edited by: Wyllie TD, Scott DH. 1988, APS, St. Paul, 106-113.

2. Su G, Suh SO, Schneider RW, Russin JS: Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology. 2001, 91: 120-126. 10.1094/PHYTO.2001.91.2.120.

3. Mayek-Pérez N, López-Castañeda C, López-Salinas E, Cumpián-Gutiérrez J, Acosta-Gallegos JA: Macrophomina phaseolina resistance in common bean under field conditions in Mexico. Agrociencia. 2001, 35: 649-661.

4. Raguchander T, Samiyappan R, Arjunan G: Biocontrol of Macrophomina root rot of mungbean. Indian Phytopathol. 1993, 46: 379-382.

5. De BK, Chattopadhya SB: Effect of potash on stem rot diseases of jute caused by Macrophomicna phaseolina. J Mycopathol Res. 1992, 30: 51-55.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3