Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding

Author:

Ould Estaghvirou Sidi Boubacar,Ogutu Joseph O,Schulz-Streeck Torben,Knaak Carsten,Ouzunova Milena,Gordillo Andres,Piepho Hans-Peter

Abstract

Abstract Background In genomic prediction, an important measure of accuracy is the correlation between the predicted and the true breeding values. Direct computation of this quantity for real datasets is not possible, because the true breeding value is unknown. Instead, the correlation between the predicted breeding values and the observed phenotypic values, called predictive ability, is often computed. In order to indirectly estimate predictive accuracy, this latter correlation is usually divided by an estimate of the square root of heritability. In this study we use simulation to evaluate estimates of predictive accuracy for seven methods, four (1 to 4) of which use an estimate of heritability to divide predictive ability computed by cross-validation. Between them the seven methods cover balanced and unbalanced datasets as well as correlated and uncorrelated genotypes. We propose one new indirect method (4) and two direct methods (5 and 6) for estimating predictive accuracy and compare their performances and those of four other existing approaches (three indirect (1 to 3) and one direct (7)) with simulated true predictive accuracy as the benchmark and with each other. Results The size of the estimated genetic variance and hence heritability exerted the strongest influence on the variation in the estimated predictive accuracy. Increasing the number of genotypes considerably increases the time required to compute predictive accuracy by all the seven methods, most notably for the five methods that require cross-validation (Methods 1, 2, 3, 4 and 6). A new method that we propose (Method 5) and an existing method (Method 7) used in animal breeding programs were the fastest and gave the least biased, most precise and stable estimates of predictive accuracy. Of the methods that use cross-validation Methods 4 and 6 were often the best. Conclusions The estimated genetic variance and the number of genotypes had the greatest influence on predictive accuracy. Methods 5 and 7 were the fastest and produced the least biased, the most precise, robust and stable estimates of predictive accuracy. These properties argue for routinely using Methods 5 and 7 to assess predictive accuracy in genomic selection studies.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3