The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses

Author:

Hartings Hans,Lauria Massimiliano,Lazzaroni Nadia,Pirona Raul,Motto Mario

Abstract

Abstract Background The changes in storage reserve accumulation during maize (Zea mays L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The Opaque-2 (O2) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the Opaque-7 (O7) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the o2 and o7 mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants. Results We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the o7 mutant, but severe in the o2 and o2o7 backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes. Conclusion Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference60 articles.

1. Motto M, Thompson R, Salamini F: Genetic regulation of carbohydrate and protein accumulation in seeds. Cellular and Molecular Biology of Plant Seed Development. Edited by: Larkins BA, Vasil IK. 1997

2. Olsen OA: Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell. 2004, 16: 214-227. 10.1105/tpc.017111.

3. Gibbon BC, Larkins BA: Molecular genetic approaches to developing quality protein maize. Trends Genetics. 2005, 21: 227-233. 10.1016/j.tig.2005.02.009.

4. Coleman CE, Larkins BA: Prolamines of maize. Seed Proteins. Edited by: Casey R, Shewry PR. 1998, Kluwer Academic Publishers, Dordrecht, The Netherlands

5. Song R, Messing J: Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA. 2003, 100: 9055-9060. 10.1073/pnas.1032999100.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3