Author:
Lee Kyung-Bum,De Backer Philippe,Aono Toshihiro,Liu Chi-Te,Suzuki Shino,Suzuki Tadahiro,Kaneko Takakazu,Yamada Manabu,Tabata Satoshi,Kupfer Doris M,Najar Fares Z,Wiley Graham B,Roe Bruce,Binnewies Tim T,Ussery David W,D'Haeze Wim,Den Herder Jeroen,Gevers Dirk,Vereecke Danny,Holsters Marcelle,Oyaizu Hiroshi
Abstract
Abstract
Background
Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast-growing, submergence-tolerant tropical legume on which A. caulinodans can efficiently induce nodule formation on the root system and on adventitious rootlets located on the stem.
Results
The 5.37-Mb genome consists of a single circular chromosome with an overall average GC of 67% and numerous islands with varying GC contents. Most nodulation functions as well as a putative type-IV secretion system are found in a distinct symbiosis region. The genome contains a plethora of regulatory and transporter genes and many functions possibly involved in contacting a host. It potentially encodes 4717 proteins of which 96.3% have homologs and 3.7% are unique for A. caulinodans. Phylogenetic analyses show that the diazotroph Xanthobacter autotrophicus is the closest relative among the sequenced genomes, but the synteny between both genomes is very poor.
Conclusion
The genome analysis reveals that A. caulinodans is a diazotroph that acquired the capacity to nodulate most probably through horizontal gene transfer of a complex symbiosis island. The genome contains numerous genes that reflect a strong adaptive and metabolic potential. These combined features and the availability of the annotated genome make A. caulinodans an attractive organism to explore symbiotic biological nitrogen fixation beyond leguminous plants.
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC: How rhizobial symbionts invade plants: the Sinorhizobium – Medicago model. Nat Rev Microbiol. 2007, 5: 619-633. 10.1038/nrmicro1705.
2. Boivin C, Ndoye I, Molouba F, de Lajudie P, Dupuy N, Dreyfus B: Stem nodulation in legumes: diversity, mechanisms and unusual characters. Crit Rev Plant Sci. 1997, 16: 1-30. 10.1080/713608143.
3. Sprent JI: Nodulation in Legumes. 2002, Kew: Royal Botanical Gardens
4. Dreyfus B, Dommergues YR: Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett. 1981, 10: 313-317. 10.1111/j.1574-6968.1981.tb06262.x.
5. Duhoux E, Dreyfus BL: Nature des sites d'infection par le Rhizobium de la tige de la légumineuse Sesbania rostrata Brem. C R Hebd Séances Acad Sci Paris. 1982, 294: 407-411.
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献