Author:
Bruce Myron,Hess Ann,Bai Jianfa,Mauleon Ramil,Diaz M Genaleen,Sugiyama Nobuko,Bordeos Alicia,Wang Guo-Liang,Leung Hei,Leach Jan E
Abstract
Abstract
Background
The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL). However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions.
Results
We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/.
Conclusion
We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a database saturated with deletions across the rice genome. This community resource can continue to grow with further hybridizations, allowing researchers to quickly identify mutants that harbor deletions in candidate genomic regions, for example, regions containing QTL of interest.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han CD, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, et al: Rice mutant resources for gene discovery. Plant Mol Biol. 2004, 54 (3): 325-334. 10.1023/B:PLAN.0000036368.74758.66.
2. An G, Jeong DH, Jung KH, Lee S: Reverse genetic approaches for functional genomics of rice. Plant Mol Biol. 2005, 59 (1): 111-123. 10.1007/s11103-004-4037-y.
3. Jung KH, An G, Ronald PC: Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet. 2008, 9 (2): 91-101. 10.1038/nrg2286.
4. Leung H, McNally KL, Mackill D: Rice. Genetic Variation: A Laboratory Manual. Edited by: Weiner MP, Gabriel SB, Stephens JC. 2007, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 335-351.
5. Kodym A, Afza R: Physical and chemical mutagenesis. 2003, 236: 189-203.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献