Identifying breast cancer risk loci by global differential allele-specific expression (DASE) analysis in mammary epithelial transcriptome

Author:

Gao Chuan,Devarajan Karthik,Zhou Yan,Slater Carolyn M,Daly Mary B,Chen Xiaowei

Abstract

Abstract Background The significant mortality associated with breast cancer (BCa) suggests a need to improve current research strategies to identify new genes that predispose women to breast cancer. Differential allele-specific expression (DASE) has been shown to contribute to phenotypic variables in humans and recently to the pathogenesis of cancer. We previously reported that nonsense-mediated mRNA decay (NMD) could lead to DASE of BRCA1/2, which is associated with elevated susceptibility to breast cancer. In addition to truncation mutations, multiple genetic and epigenetic factors can contribute to DASE, and we propose that DASE is a functional index for cis-acting regulatory variants and pathogenic mutations, and that global analysis of DASE in breast cancer precursor tissues can be used to identify novel causative alleles for breast cancer susceptibility. Results To test our hypothesis, we employed the Illumina® Omni1-Quad BeadChip in paired genomic DNA (gDNA) and double-stranded cDNA (ds-cDNA) samples prepared from eight BCa patient-derived normal mammary epithelial lines (HMEC). We filtered original array data according to heterozygous genotype calls and calculated DASE values using the Log ratio of cDNA allele intensity, which was normalized to the corresponding gDNA. We developed two statistical methods, SNP- and gene-based approaches, which allowed us to identify a list of 60 candidate DASE loci (DASE ≥ 2.00, P ≤ 0.01, FDR ≤ 0.05) by both methods. Ingenuity Pathway Analysis of DASE loci revealed one major breast cancer-relevant interaction network, which includes two known cancer causative genes, ZNF331 (DASE = 2.31, P = 0.0018, FDR = 0.040) and USP6 (DASE = 4.80, P = 0.0013, FDR = 0.013), and a breast cancer causative gene, DMBT1 (DASE=2.03, P = 0.0017, FDR = 0.014). Sequence analysis of a 5′ RACE product of DMBT1 demonstrated that rs2981745, a putative breast cancer risk locus, appears to be one of the causal variants leading to DASE in DMBT1. Conclusions Our study demonstrated for the first time that global DASE analysis is a powerful new approach to identify breast cancer risk allele(s).

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3