Differentially profiling the low-expression transcriptomes of human hepatoma using a novel SSH/microarray approach

Author:

Pan Yi-Shin,Lee Yun-Shien,Lee Yung-Lin,Lee Wei-Chen,Hsieh Sen-Yung

Abstract

Abstract Background The main limitation in performing genome-wide gene-expression profiling is the assay of low-expression genes. Approaches with high throughput and high sensitivity for assaying low-expression transcripts are urgently needed for functional genomic studies. Combination of the suppressive subtractive hybridization (SSH) and cDNA microarray techniques using the subtracted cDNA clones as probes printed on chips has greatly improved the efficiency for fishing out the differentially expressed clones and has been used before. However, it remains tedious and inefficient sequencing works for identifying genes including the great number of redundancy in the subtracted amplicons, and sacrifices the original advantages of high sensitivity of SSH in profiling low-expression transcriptomes. Results We modified the previous combination of SSH and microarray methods by directly using the subtracted amplicons as targets to hybridize the pre-made cDNA microarrays (named as "SSH/microarray"). mRNA prepared from three pairs of hepatoma and non-hepatoma liver tissues was subjected to the SSH/microarray assays, as well as directly to regular cDNA microarray assays for comparison. As compared to the original SSH and microarray combination assays, the modified SSH/microarray assays allowed for much easier inspection of the subtraction efficiency and identification of genes in the subtracted amplicons without tedious and inefficient sequencing work. On the other hand, 5015 of the 9376 genes originally filtered out by the regular cDNA microarray assays because of low expression became analyzable by the SSH/microarray assays. Moreover, the SSH/microarray assays detected about ten times more (701 vs. 69) HCC differentially expressed genes (at least a two-fold difference and P < 0.01), particularly for those with rare transcripts, than did the regular cDNA microarray assays. The differential expression was validated in 9 randomly selected genes in 18 pairs of hepatoma/non-hepatoma liver tissues using quantitative RT-PCR. The SSH/microarray approaches resulted in identifying many differentially expressed genes implicated in the regulation of cell cycle, cell death, signal transduction and cell morphogenesis, suggesting the involvement of multi-biological processes in hepato-carcinogenesis. Conclusion The modified SSH/microarray approach is a simple but high-sensitive and high-efficient tool for differentially profiling the low-expression transcriptomes. It is most adequate for applying to functional genomic studies.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3