Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

Author:

Chancerel Emilie,Lepoittevin Camille,Le Provost Grégoire,Lin Yao-Cheng,Jaramillo-Correa Juan Pablo,Eckert Andrew J,Wegrzyn Jill L,Zelenika Diana,Boland Anne,Frigerio Jean-Marc,Chaumeil Philippe,Garnier-Géré Pauline,Boury Christophe,Grivet Delphine,González-Martínez Santiago C,Rouzé Pierre,Van de Peer Yves,Neale David B,Cervera Maria T,Kremer Antoine,Plomion Christophe

Abstract

Abstract Background Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference60 articles.

1. Gernandt DS, Willyard A, Syring JV, Liston A: The Conifers (Pinophyta). Genetics, Genomics and Breeding of Conifers. Edited by: Plomion C, Bousquet J, Kole C. 2011, Science Publ, Enfield, New Jersey, USA,

2. Mullin TJ, Andersson B, Bastien JC, Beaulieu J, Burdon RD, Dvorak WS, King JN, Kondo T, Krakowski J, Lee SJ, McKeand SE, Pâques L, Raffin A, Russell JH, Skrøppa T, Stoehr M, Yanchuk A: Economic Importance, Breeding Objectives and Achievements. Genetics, Genomics and Breeding of Conifers. Edited by: Plomion C, Bousquet J, Kole C. 2011, Science Publ, Enfield, New Jersey, USA,

3. Kremer A: Predictions of age-age correlations of total height based on serial correlations between height increments in Maritime pine (Pinus pinaster Ait.). Theor Appl Genet. 1992, 2-3: 152-158.

4. Murray B: Nuclear DNA amounts in gymnosperms. Ann Bot. 1998, 82: 3-15.

5. Neale DB, Kremer A: Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011, 12: 111-122.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3