Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine
-
Published:2011-07-18
Issue:1
Volume:12
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Chancerel Emilie,Lepoittevin Camille,Le Provost Grégoire,Lin Yao-Cheng,Jaramillo-Correa Juan Pablo,Eckert Andrew J,Wegrzyn Jill L,Zelenika Diana,Boland Anne,Frigerio Jean-Marc,Chaumeil Philippe,Garnier-Géré Pauline,Boury Christophe,Grivet Delphine,González-Martínez Santiago C,Rouzé Pierre,Van de Peer Yves,Neale David B,Cervera Maria T,Kremer Antoine,Plomion Christophe
Abstract
Abstract
Background
Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe.
Results
We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species.
Conclusions
Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference60 articles.
1. Gernandt DS, Willyard A, Syring JV, Liston A: The Conifers (Pinophyta). Genetics, Genomics and Breeding of Conifers. Edited by: Plomion C, Bousquet J, Kole C. 2011, Science Publ, Enfield, New Jersey, USA, 2. Mullin TJ, Andersson B, Bastien JC, Beaulieu J, Burdon RD, Dvorak WS, King JN, Kondo T, Krakowski J, Lee SJ, McKeand SE, Pâques L, Raffin A, Russell JH, Skrøppa T, Stoehr M, Yanchuk A: Economic Importance, Breeding Objectives and Achievements. Genetics, Genomics and Breeding of Conifers. Edited by: Plomion C, Bousquet J, Kole C. 2011, Science Publ, Enfield, New Jersey, USA, 3. Kremer A: Predictions of age-age correlations of total height based on serial correlations between height increments in Maritime pine (Pinus pinaster Ait.). Theor Appl Genet. 1992, 2-3: 152-158. 4. Murray B: Nuclear DNA amounts in gymnosperms. Ann Bot. 1998, 82: 3-15. 5. Neale DB, Kremer A: Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011, 12: 111-122.
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|