Flux of transcript patterns during soybean seed development

Author:

Jones Sarah I,Gonzalez Delkin O,Vodkin Lila O

Abstract

Abstract Background To understand gene expression networks leading to functional properties of the soybean seed, we have undertaken a detailed examination of soybean seed development during the stages of major accumulation of oils, proteins, and starches, as well as the desiccating and mature stages, using microarrays consisting of up to 27,000 soybean cDNAs. A subset of these genes on a highly-repetitive 70-mer oligonucleotide microarray was also used to support the results. Results It was discovered that genes related to cell growth and maintenance processes, as well as energy processes like photosynthesis, decreased in expression levels as the cotyledons approached the mature, dry stage. Genes involved with some storage proteins had their highest expression levels at the stage of highest fresh weight. However, genes encoding many transcription factors and DNA binding proteins showed higher expression levels in the desiccating and dry seeds than in most of the green stages. Conclusions Data on 27,000 cDNAs have been obtained over five stages of soybean development, including the stages of major accumulation of agronomically-important products, using two different types of microarrays. Of particular interest are the genes found to peak in expression at the desiccating and dry seed stages, such as those annotated as transcription factors, which may indicate the preparation of pathways that will be needed later in the early stages of imbibition and germination.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference54 articles.

1. Ritchie SW, Hanway JJ, Thompson HE, Benson GO: How a soybean plant develops. Special Report No. 53. 1996, Ames IA: Iowa State University of Science and Technology Cooperative Extension Service

2. Bewley JD, Hempel FD, McCormick S, Zambryski P: Reproductive development. Biochemistry and Molecular Biology of Plants. Edited by: Buchanan BB, Gruissem W, Jones RL. 2000, Rockville MD: American Society of Plant Physiologists, 988-1043.

3. Hills MJ: Control of storage-product synthesis in seeds. Curr Opin Plant Biol. 2004, 7: 302-308. 10.1016/j.pbi.2004.03.003.

4. Rosenberg LA, Rinne RW: Moisture loss as a prerequisite for seedling growth in soybean seeds. J Exp Bot. 1986, 37: 1663-1674. 10.1093/jxb/37.11.1663.

5. Carlson JB, Lersten NR: Reproductive morphology. Soybeans: Improvement, Production, and Uses. Edited by: Boerma HR, Specht JE. 2004, Madison WI: American Society of Agronomy, 59-95.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3