Glycerate kinase of the hyperthermophilic archaeon Thermoproteus tenax: new insights into the phylogenetic distribution and physiological role of members of the three different glycerate kinase classes

Author:

Kehrer Daniel,Ahmed Hatim,Brinkmann Henner,Siebers Bettina

Abstract

Abstract Background The presence of the branched Entner-Doudoroff (ED) pathway in two hyperthermophilic Crenarchaea, the anaerobe Thermoproteus tenax and the aerobe Sulfolobus solfataricus, was suggested. However, so far no enzymatic information of the non-phosphorylative ED branch and especially its key enzyme – glycerate kinase – was available. In the T. tenax genome, a gene homolog with similarity to putative hydroxypyruvate reductase/glycerate dehydrogenase and glycerate kinase was identified. Results The encoding gene was expressed in E. coli in a recombinant form, the gene product purified and the glycerate kinase activity was confirmed by enzymatic studies. The enzyme was active as a monomer and catalyzed the ATP-dependent phosphorylation of D-glycerate forming exclusively 2-phosphoglycerate. The enzyme was specific for glycerate and highest activity was observed with ATP as phosphoryl donor and Mg2+ as divalent cation. ATP could be partially replaced by GTP, CTP, TTP and UTP. The enzyme showed high affinity for D-glycerate (Km 0.02 ± 0.01 mM, Vmax of 5.05 ± 0.52 U/mg protein) as well as ATP (Km of 0.03 ± 0.01 mM, Vmax of 4.41 ± 0.04 U/mg protein), although at higher glycerate concentrations, substrate inhibition was observed. Furthermore, the enzyme was inhibited by its product ADP via competitive inhibition. Data bank searches revealed that archaeal glycerate kinases are members of the MOFRL (multi-organism fragment with rich leucine) family, and homologs are found in all three domains of life. Conclusion A re-evaluation of available genome sequence information as well as biochemical and phylogenetic studies revealed the presence of the branched ED pathway as common route for sugar degradation in Archaea that utilize the ED pathway. Detailed analyses including phylogenetic studies demonstrate the presence of three distinct glycerate kinase classes in extant organisms that share no common origin. The affiliation of characterized glycerate kinases with the different enzyme classes as well as their physiological/cellular function reveals no association with particular pathways but a separate phylogenetic distribution. This work highlights the diversity and complexity of the central carbohydrate metabolism. The data also support a key function of the conversion of glycerate to 2- or 3-phosphoglycerate via glycerate kinase in funneling various substrates into the common EMP pathway for catabolic and anabolic purposes.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3