Author:
Andersen John F,Hinnebusch B Joseph,Lucas David A,Conrads Thomas P,Veenstra Timothy D,Pham Van M,Ribeiro José MC
Abstract
Abstract
Background
The salivary glands of hematophagous animals contain a complex cocktail that interferes with the host hemostasis and inflammation pathways, thus increasing feeding success. Fleas represent a relatively recent group of insects that evolved hematophagy independently of other insect orders.
Results
Analysis of the salivary transcriptome of the flea Xenopsylla cheopis, the vector of human plague, indicates that gene duplication events have led to a large expansion of a family of acidic phosphatases that are probably inactive, and to the expansion of the FS family of peptides that are unique to fleas. Several other unique polypeptides were also uncovered. Additionally, an apyrase-coding transcript of the CD39 family appears as the candidate for the salivary nucleotide hydrolysing activity in X.cheopis, the first time this family of proteins is found in any arthropod salivary transcriptome.
Conclusion
Analysis of the salivary transcriptome of the flea X. cheopis revealed the unique pathways taken in the evolution of the salivary cocktail of fleas. Gene duplication events appear as an important driving force in the creation of salivary cocktails of blood feeding arthropods, as was observed with ticks and mosquitoes. Only five other flea salivary sequences exist at this time at NCBI, all from the cat flea C. felis. This work accordingly represents the only relatively extensive sialome description of any flea species. Sialotranscriptomes of additional flea genera will reveal the extent that these novel polypeptide families are common throughout the Siphonaptera.
Publisher
Springer Science and Business Media LLC
Reference89 articles.
1. Ribeiro JMC: Blood-feeding arthropods: Live syringes or invertebrate pharmacologists?. Infect Agents Dis. 1995, 4: 143-152.
2. Grimaldi D, Engel M: Evolution of the insects. 2005, New York: Cambridge University Press
3. Rothschild M: Recent advances in our knowledge of the order Siphonaptera. Annu Rev Entomol. 1975, 20: 241-259. 10.1146/annurev.en.20.010175.001325.
4. Rai KS, Black WC: Mosquito genomes: Structure, organization, and evolution. Adv Genet. 1999, 41: 1-33. full_text.
5. Andersen JF, Weichsel A, Balfour CA, Champagne DE, Montfort WR: The crystal structure of nitrophorin 4 at 1.5 A resolution: transport of nitric oxide by a lipocalin-based heme protein. Structure. 1998, 6 (10): 1315-1327. 10.1016/S0969-2126(98)00131-2.
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献