In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects

Author:

Lastella Patrizia,Surdo Nicoletta Concetta,Resta Nicoletta,Guanti Ginevra,Stella Alessandro

Abstract

Abstract Background Abnormalities of pre-mRNA splicing are increasingly recognized as an important mechanism through which gene mutations cause disease. However, apart from the mutations in the donor and acceptor sites, the effects on splicing of other sequence variations are difficult to predict. Loosely defined exonic and intronic sequences have been shown to affect splicing efficiency by means of silencing and enhancement mechanisms. Thus, nucleotide substitutions in these sequences can induce aberrant splicing. Web-based resources have recently been developed to facilitate the identification of nucleotide changes that could alter splicing. However, computer predictions do not always correlate with in vivo splicing defects. The issue of unclassified variants in cancer predisposing genes is very important both for the correct ascertainment of cancer risk and for the understanding of the basic mechanisms of cancer gene function and regulation. Therefore we aimed to verify how predictions that can be drawn from in silico analysis correlate with results obtained in an in vivo splicing assay. Results We analysed 99 hMLH1 and hMSH2 missense mutations with six different algorithms. Transfection of three different cell lines with 20 missense mutations, showed that a minority of them lead to defective splicing. Moreover, we observed that some exons and some mutations show cell-specific differences in the frequency of exon inclusion. Conclusion Our results suggest that the available algorithms, while potentially helpful in identifying splicing modulators especially when they are located in weakly defined exons, do not always correspond to an obvious modification of the splicing pattern. Thus caution must be used in assessing the pathogenicity of a missense or silent mutation with prediction programs. The variations observed in the splicing proficiency in three different cell lines suggest that nucleotide changes may dictate alternative splice site selection in a tissue-specific manner contributing to the widely observed phenotypic variability in inherited cancers.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3