Author:
Rabatel Andréane,Febvay Gérard,Gaget Karen,Duport Gabrielle,Baa-Puyoulet Patrice,Sapountzis Panagiotis,Bendridi Nadia,Rey Marjolaine,Rahbé Yvan,Charles Hubert,Calevro Federica,Colella Stefano
Abstract
Abstract
Background
Nutritional symbioses play a central role in insects’ adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology.
Results
We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch over to the late embryonic stages in pea aphid development.
Conclusions
Our data show that, in the development of A. pisum, a specific host gene set regulates the biosynthetic pathways of amino acids, demonstrating how the regulation of gene expression enables an insect to control the production of metabolites crucial for its own development and symbiotic metabolism.
Publisher
Springer Science and Business Media LLC
Reference82 articles.
1. Buchner P: Symbiosis in animals which suck plant juices. Endosymbiosis of Animals with Plant Microorganisms. Edited by: Buchner P. 1965, New York: Interscience, 210-432.
2. Douglas AE: The microbial dimension in insect nutritional ecology. Funct Ecol. 2009, 23: 38-47. 10.1111/j.1365-2435.2008.01442.x.
3. Baumann P, Moran NA, Baumann L, Dworkin M: Bacteriocyte-associated endosymbionts of insects. The Prokaryotes. Edited by: Dworkin M. 2000, New York: Springer, 1-55.
4. Baumann P: Biology of bacteriocyte-associated endosymbionts of plant sap-sucking Insects. Annu Rev Microbiol. 2005, 59: 155-189. 10.1146/annurev.micro.59.030804.121041.
5. Ziegler H, Zimmermann DL, Milburn JA: Nature of Substances in Phloem: Nature of Transported Substances. Transport in Plants I - Phloem Transport. Edited by: Zimmermann DL, Milburn JA. 1975, Berlin: Springer-Verlag, 1: 59-100.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献