Author:
Ferreira Stephanus J,Senning Melanie,Sonnewald Sophia,Keßling Petra-Maria,Goldstein Ralf,Sonnewald Uwe
Abstract
Abstract
Background
Even though the process of potato tuber starch biosynthesis is well understood, mechanisms regulating biosynthesis are still unclear. Transcriptome analysis provides valuable information as to how genes are regulated. Therefore, this work aimed at investigating transcriptional regulation of starch biosynthetic genes in leaves and tubers of potato plants under various conditions. More specifically we looked at gene expression diurnally in leaves and tubers, during tuber induction and in tubers growing at different velocities. To determine velocity of potato tuber growth a new method based on X-ray Computed Tomography (X-ray CT) was established.
Results
Comparative transcriptome analysis between leaves and tubers revealed striking similarities with the same genes being differentially expressed in both tissues. In tubers, oscillation of granule bound starch synthase (GBSS) expression) was observed which could be linked to sucrose supply from source leaves. X-ray CT was used to determine time-dependent changes in tuber volume and the growth velocity was calculated. Although there is not a linear correlation between growth velocity and expression of starch biosynthetic genes, there are significant differences between growing and non-growing tubers. Co-expression analysis was used to identify transcription factors positively correlating with starch biosynthetic genes possibly regulating starch biosynthesis.
Conclusion
Most starch biosynthetic enzymes are encoded by gene families. Co-expression analysis revealed that the same members of these gene families are co-regulated in leaves and tubers. This suggests that regulation of transitory and storage starch biosynthesis in leaves and tubers, respectively, is surprisingly similar. X-ray CT can be used to monitor growth and development of belowground organs and allows to link tuber growth to changes in gene expression. Comparative transcriptome analysis provides a useful tool to identify transcription factors possibly involved in the regulation of starch biosynthesis.
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Kruger NJ: Carbohydrate synthesis and degradation. Plant Metabolism. Edited by: Dennis DT, Turpin DH, Lefebvre DD, Layzell DB. 1997, Harlow: Longman, 83-104.
2. Farrar JF: The whole plant: Carbon partitioning during development. Carbon Partition within and Between Organisms. Edited by: Pollock CJ, Farrar JF, Gordon AJ. 1992, Oxford: Bios Scientific publishers, 163-179.
3. Sweetlove LJ, Kossmann J, Riesmeier JW, Trethewey RN, Hill SA: The control of source to sink carbon flux during tuber development in potato. Plant J. 1998, 15: 697-706. 10.1046/j.1365-313x.1998.00247.x.
4. Zrenner R, Krause KP, Apel P, Sonnewald U: Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J. 1996, 9: 671-681. 10.1046/j.1365-313X.1996.9050671.x.
5. Riesmeier JW, Willmitzer L, Frommer WB: Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 1994, 13: 1-7.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献