Genetic control of renal tumorigenesis by the mouse Rtm1 locus
-
Published:2013-10-22
Issue:1
Volume:14
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Jensen José Ricardo,Galvan Antonella,Borrego Andrea,Hanna Koury Cabrera Wafa,Ribeiro Orlando Garcia,Starobinas Nancy,De Franco Marcelo,Colecchia Maurizio,Bertolotti Alessia,Dragani Tommaso Antonio,Martinez Ibañez Olga Célia
Abstract
Abstract
Background
The genetic basis of susceptibility to renal tumorigenesis has not yet been established in mouse strains. Mouse lines derived by bidirectional phenotypic selection on the basis of their maximal (AIRmax) or minimal (AIRmin) acute inflammatory responsiveness differ widely in susceptibility to spontaneous and urethane-induced renal tumorigenesis. To map the functional loci modulating renal tumor susceptibility in these mice, we carried out a genome-wide genetic linkage study, using SNP arrays, in an (AIRmax x AIRmin)F2 intercross population treated with a single urethane dose at 1 week of age and phenotyped for renal tumors at 35 weeks of age.
Results
AIRmax mice did not develop renal tumors spontaneously nor in response to urethane, whereas in AIRmin mice renal tumors formed spontaneously (in 52% of animals) and after urethane induction (89%). The tumors had a papillary morphology and were positive for alpha-methylacyl-CoA racemase and negative for CD10. By analysis of 879 informative SNPs in 662 mice, we mapped a single quantitative trait locus modulating the incidence of renal tumors in the (AIRmax x AIRmin)F2 intercross population. This locus, which we named Renal tumor modifier QTL 1 (Rtm1), mapped to chromosome 17 at 23.4 Mb (LOD score = 15.8), with SNPs rs3696835 and rs3719497 flanking the LOD score peak. The A allele of rs3719497 from AIRmin mice was associated with a 2.5-fold increased odds ratio for renal tumor development. The LOD score peak included the Tuberous sclerosis 2 (Tsc2) gene which has already been implicated in kidney disease: loss of function by germline retroviral insertion is associated with spontaneous renal tumorigenesis in the Eker rat, and heterozygous-null Tsc2
(+/-)
mice develop renal cystadenomas.
Conclusions
We mapped Rtm1 as a single major locus modulating renal tumorigenesis in a murine intercross population. Thus, the AIR mouse lines can be considered a new genetic model for studying the role of germline and somatic molecular alterations in kidney neoplastic disease.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference35 articles.
1. Linehan WM, Srinivasan R, Schmidt LS: The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol. 2010, 7: 277-285. 10.1038/nrurol.2010.47. 2. Chow WH, Gridley G, Fraumeni JF, Jarvholm B: Obesity, hypertension, and the risk of kidney cancer in men. N Engl J Med. 2000, 343: 1305-1311. 10.1056/NEJM200011023431804. 3. Liu H, Sundquist J, Hemminki K: Familial renal cell carcinoma from the Swedish family-cancer database. Eur Urol. 2011, 60: 987-993. 10.1016/j.eururo.2011.05.031. 4. Wu X, Scelo G, Purdue MP, Rothman N, Johansson M, Ye Y, Wang Z, Zelenika D, Moore LE, Wood CG, Prokhortchouk E, Gaborieau V, Jacobs KB, Chow WH, Toro JR, Zaridze D, Lin J, Lubinski J, Trubicka J, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Jinga V, Bencko V, Slamova A, Holcatova I, Navratilova M, Janout V: A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum Mol Genet. 2012, 21: 456-462. 10.1093/hmg/ddr479. 5. Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Gaborieau V, Jacobs KB, Chow WH, Zaridze D, Matveev V, Lubinski J, Trubicka J, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Bucur A, Bencko V, Foretova L, Janout V, Boffetta P, Colt JS, Davis FG, Schwartz KL, Banks RE, Selby PJ: Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 2011, 43: 60-65. 10.1038/ng.723.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|