Author:
Cheng Shu,Prot Jean-Matthieu,Leclerc Eric,Bois Frédéric Y
Abstract
Abstract
Background
Understanding hepatic zonation is important both for liver physiology and pathology. There is currently no effective systemic chemotherapy for human hepatocellular carcinoma (HCC) and its pathogenesis is of special interest. Genomic and proteomic data of HCC cells in different culture models, coupled to pathway-based analysis, can help identify HCC-related gene and pathway dysfunctions.
Results
We identified zonation-related expression profiles contributing to selective phenotypes of HCC, by integrating relevant experimental observations through gene set enrichment analysis (GSEA). Analysis was based on gene and protein expression data measured on a human HCC cell line (HepG2/C3A) in two culture conditions: dynamic microfluidic biochips and static Petri dishes. Metabolic activity (HCC-related cytochromes P450) and genetic information processing were dominant in the dynamic cultures, in contrast to kinase signaling and cancer-specific profiles in static cultures. That, together with analysis of the published literature, leads us to propose that biochips culture conditions induce a periportal-like hepatocyte phenotype while standard plates cultures are more representative of a perivenous-like phenotype. Both proteomic data and GSEA results further reveal distinct ubiquitin-mediated protein regulation in the two culture conditions.
Conclusions
Pathways analysis, using gene and protein expression data from two cell culture models, confirmed specific human HCC phenotypes with regard to CYPs and kinases, and revealed a zonation-related pattern of expression. Ubiquitin-mediated regulation mechanism gives plausible explanations of our findings. Altogether, our results suggest that strategies aimed at inhibiting activated kinases and signaling pathways may lead to enhanced metabolism-mediated drug resistance of treated tumors. If that were the case, mitigating inhibition or targeting inactive forms of kinases would be an alternative.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Christoffels VM, Sassi H, Ruijter JM, Moorman AF, Grange T, Lamers WH: A mechanistic model for the development and maintenance of portocentral gradients in gene expression in the liver. Hepatology. 1999, 29 (4): 1180-1192.
2. Gebhardt R: Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992, 53 (3): 275-354.
3. Jungermann K, Katz N: Functional specialization of different hepatocyte populations. Physiol Rev. 1989, 69 (3): 708-764.
4. Jungermann K, Kietzmann T: Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr. 1996, 16: 179-203.
5. Braeuning A, Schwarz M: β-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver. Biological Chemistry. 2009, 391 (2/3): 139-148.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献