Author:
Tsuchiya Soken,Tachida Yuki,Segi-Nishida Eri,Okuno Yasushi,Tamba Shigero,Tsujimoto Gozoh,Tanaka Satoshi,Sugimoto Yukihiko
Abstract
Abstract
Background
Mast cells (MCs) play pivotal roles in allergy and innate immunity and consist of heterogenous subclasses. However, the molecular basis determining the different characteristics of these multiple MC subclasses remains unclear.
Results
To approach this, we developed a method of RNA extraction/amplification for intact in vivo MCs pooled from frozen tissue sections, which enabled us to obtain the global gene expression pattern of pooled MCs belonging to the same subclass. MCs were isolated from the submucosa (sMCs) and mucosa (mMCs) of mouse stomach sections, respectively, 15 cells were pooled, and their RNA was extracted, amplified and subjected to microarray analysis. Known marker genes specific for mMCs and sMCs showed expected expression trends, indicating accuracy of the analysis.
We identified 1,272 genes showing significantly different expression levels between sMCs and mMCs, and classified them into clusters on the basis of similarity of their expression profiles compared with bone marrow-derived MCs, which are the cultured MCs with so-called 'immature' properties. Among them, we found that several key genes such as Notch4 had sMC-biased expression and Ptgr1 had mMC-biased expression. Furthermore, there is a difference in the expression of several genes including extracellular matrix protein components, adhesion molecules, and cytoskeletal proteins between the two MC subclasses, which may reflect functional adaptation of each MC to the mucosal or submucosal environment in the stomach.
Conclusion
By using the method of RNA amplification from pooled intact MCs, we characterized the distinct gene expression profiles of sMCs and mMCs in the mouse stomach. Our findings offer insight into possible unidentified properties specific for each MC subclass.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Metcalfe DD, Baram D, Mekori YA: Mast cells. Physiol Rev. 1997, 77: 1033-1079.
2. Reynolds DS, Stevens RL, Lane WS, Carr MH, Austen KF, Serafin WE: Different mouse mast cell populations express various combinations of at least six distinct mast cell serine proteases. Proc Natl Acad Sci USA. 1990, 87: 3230-3234. 10.1073/pnas.87.8.3230.
3. Bradding P, Okayama Y, Kambe N, Saito H: Ion channel gene expression in human lung, skin, and cord blood-derived mast cells. J Leukoc Biol. 2003, 73: 614-620. 10.1189/jlb.1202602.
4. Ogasawara T, Murakami M, Suzuki-Nishimura T, Uchida MK, Kudo I: Mouse bone marrow-derived mast cells undergo exocytosis, prostanoid generation, and cytokine expression in response to G protein-activating polybasic compounds after coculture with fibroblasts in the presence of c-kit ligand. J Immunol. 1997, 158: 393-404.
5. Hernandez-Hansen V, Bard JD, Tarleton CA, Wilder JA, Lowell CA, Wilson BS, Oliver JM: Increased expression of genes linked to FcepsilonRI Signaling and to cytokine and chemokine production in Lyn-deficient mast cells. J Immunol. 2005, 175: 7880-7888.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献