Author:
von Schalburg Kristian R,Yazawa Ryosuke,de Boer Johan,Lubieniecki Krzysztof P,Goh Benjamin,Straub Christopher A,Beetz-Sargent Marianne R,Robb Adrienne,Davidson William S,Devlin Robert H,Koop Ben F
Abstract
Abstract
Background
Growth hormone (GH) is an important regulator of skeletal growth, as well as other adapted processes in salmonids. The GH gene (gh) in salmonids is represented by duplicated, non-allelic isoforms designated as gh1 and gh2. We have isolated and characterized gh-containing bacterial artificial chromosomes (BACs) of both Atlantic and Chinook salmon (Salmo salar and Oncorhynchus tshawytscha) in order to further elucidate our understanding of the conservation and regulation of these loci.
Results
BACs containing gh1 and gh2 from both Atlantic and Chinook salmon were assembled, annotated, and compared to each other in their coding, intronic, regulatory, and flanking regions. These BACs also contain the genes for skeletal muscle sodium channel oriented in the same direction. The sequences of the genes for interferon alpha-1, myosin alkali light chain and microtubule associated protein Tau were also identified, and found in opposite orientations relative to gh1 and gh2. Viability of each of these genes was examined by PCR. We show that transposon insertions have occurred differently in the promoters of gh, within and between each species. Other differences within the promoters and intronic and 3'-flanking regions of the four gh genes provide evidence that they have distinct regulatory modes and possibly act to function differently and/or during different times of salmonid development.
Conclusion
A core proximal promoter for transcription of both gh1 and gh2 is conserved between the two species of salmon. Nevertheless, transposon integration and regulatory element differences do exist between the promoters of gh1 and gh2. Additionally, organization of transposon families into the BACs containing gh1 and for the BACs containing gh2, are very similar within orthologous regions, but much less clear conservation is apparent in comparisons between the gh1- and gh2-containing paralogous BACs for the two fish species. This is consistent with the hypothesis that a burst of transposition activity occurred during the speciation events which led to Atlantic and Pacific salmon. The Chinook and other Oncorhynchus GH1s are strikingly different in comparison to the other GHs and this change is not apparent in the surrounding non-coding sequences.
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, Walsh PJ, Vijayan MM, Devlin RH, Hardy RW, Overturf KE, Young WP, Robison BD, Rexroad C, Palti Y: Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B Biochem Mol Biol. 2002, 133: 609-646. 10.1016/S1096-4959(02)00167-7.
2. Groot C, Margolis L: Pacific Salmon Life Histories. 1991, Vancouver, Canada: UBC Press
3. Groot C, Margolis L, Clarke WC: Physiological Ecology of Pacific Salmon. 1995, Vancouver, Canada: UBC Press
4. Thompson BJL, Shang CA, Waters MJ: Identification of genes induced by growth hormone in rat liver using cDNA arrays. Endocrinology. 2000, 141: 4321-4324. 10.1210/en.141.11.4321.
5. Bjornsson BTh: The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem. 1997, 17: 9-24. 10.1023/A:1007712413908.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献