The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera

Author:

Haridas Sajeet,Wang Ye,Lim Lynette,Massoumi Alamouti Sepideh,Jackman Shaun,Docking Rod,Robertson Gordon,Birol Inanc,Bohlmann Jörg,Breuil Colette

Abstract

Abstract Background Ophiostoma piceae is a wood-staining fungus that grows in the sapwood of conifer logs and lumber. We sequenced its genome and analyzed its transcriptomes under a range of growth conditions. A comparison with the genome and transcriptomes of the mountain pine beetle-associated pathogen Grosmannia clavigera highlights differences between a pathogen that colonizes and kills living pine trees and a saprophyte that colonizes wood and the inner bark of dead trees. Results We assembled a 33 Mbp genome in 45 scaffolds, and predicted approximately 8,884 genes. The genome size and gene content were similar to those of other ascomycetes. Despite having similar ecological niches, O. piceae and G. clavigera showed no large-scale synteny. We identified O. piceae genes involved in the biosynthesis of melanin, which causes wood discoloration and reduces the commercial value of wood products. We also identified genes and pathways involved in growth on simple carbon sources and in sapwood, O. piceae’s natural substrate. Like the pathogen, the saprophyte is able to tolerate terpenes, which are a major class of pine tree defense compounds; unlike the pathogen, it cannot utilize monoterpenes as a carbon source. Conclusions This work makes available the second annotated genome of a softwood ophiostomatoid fungus, and suggests that O. piceae’s tolerance to terpenes may be due in part to these chemicals being removed from the cells by an ABC transporter that is highly induced by terpenes. The data generated will provide the research community with resources for work on host-vector-fungus interactions for wood-inhabiting, beetle-associated saprophytes and pathogens.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference67 articles.

1. Seifert K: Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis. Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. Edited by: Wingfield M, Seifert K, Webber J. 1993, St Paul, Minnesota: APS Press, 141-151.

2. Harrington TC: Diseases of conifers caused by species of Ophiostoma and Leptographium. Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. Edited by: Wingfield M, Seifert K, Webber J. 1993, St Paul, Minnesota: APS Press, 161-172.

3. Münch E: Die bläufaule des nadelholzes. I-II. Naturwiss Z Forst-landw. 1907, 5: 531-573.

4. Upadhyay H: Classification of the Ophiostomatoid fungi. Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. Edited by: Wingfield M, Seifert K, Webber J. 1993, St Paul, Minnesota: APS Press, 7-13.

5. Krokene P, Solheim H: Pathogenicity of four blue-stain fungi associated with aggressive and nonaggressive bark beetles. Phytopathology. 1998, 88 (1): 39-44. 10.1094/PHYTO.1998.88.1.39.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3