Combination of native and denaturing PAGE for the detection of protein binding regions in long fragments of genomic DNA

Author:

Kaer Kristel,Mätlik Kert,Metsis Madis,Speek Mart

Abstract

Abstract Background In a traditional electrophoresis mobility shift assay (EMSA) a 32P-labeled double-stranded DNA oligonucleotide or a restriction fragment bound to a protein is separated from the unbound DNA by polyacrylamide gel electrophoresis (PAGE) in nondenaturing conditions. An extension of this method uses the large population of fragments derived from long genomic regions (approximately 600 kb) for the identification of fragments containing protein binding regions. With this method, genomic DNA is fragmented by restriction enzymes, fragments are amplified by PCR, radiolabeled, incubated with nuclear proteins and the resulting DNA-protein complexes are separated by two-dimensional PAGE. Shifted DNA fragments containing protein binding sites are identified by using additional procedures, i. e. gel elution, PCR amplification, cloning and sequencing. Although the method allows simultaneous analysis of a large population of fragments, it is relatively laborious and can be used to detect only high affinity protein binding sites. Here we propose an alternative and straightforward strategy which is based on a combination of native and denaturing PAGE. This strategy allows the identification of DNA fragments containing low as well as high affinity protein binding regions, derived from genomic DNA (<10 kb) of known sequence. Results We have combined an EMSA-based selection step with subsequent denaturing PAGE for the localization of protein binding regions in long (up to10 kb) fragments of genomic DNA. Our strategy consists of the following steps: digestion of genomic DNA with a 4-cutter restriction enzyme (Alu I, Bsu RI, Tru I, etc), separation of low and high molecular weight fractions of resultant DNA fragments, 32P-labeling with Klenow polymerase, traditional EMSA, gel elution and identification of the shifted bands (or smear) by denaturing PAGE. The identification of DNA fragments containing protein binding sites is carried out by running the gel-eluted fragments alongside with the full "spectrum" of initial restriction fragments of known size. Here the strategy is used for the identification of protein-binding regions in the 5' region of the rat p75 neurotrophin receptor (p75NTR) gene. Conclusion The developed strategy is based on a combination of traditional EMSA and denaturing PAGE for the identification of protein binding regions in long fragments of genomic DNA. The identification is straightforward and can be applied to shifted bands corresponding to stable DNA-protein complexes as well as unstable complexes, which undergo dissociation during electrophoresis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3