Author:
Bhardwaj Jyoti,Chauhan Rohit,Swarnkar Mohit Kumar,Chahota Rakesh Kumar,Singh Anil Kumar,Shankar Ravi,Yadav Sudesh Kumar
Abstract
Abstract
Background
Drought tolerance is an attribute maintained in plants by cross-talk between multiple and cascading metabolic pathways. Without a sequenced genome available for horse gram, it is difficult to comprehend such complex networks and intercalated genes associated with drought tolerance of horse gram (Macrotyloma uniflorum). Therefore, de novo transcriptome discovery and associated analyses was done for this highly drought tolerant yet under exploited legume to decipher its genetic makeup.
Results
Eight samples comprising of shoot and root tissues of two horse gram genotypes (drought-sensitive; M-191 and drought-tolerant; M-249) were used for comparison under control and polyethylene glycol-induced drought stress conditions. Using Illumina sequencing technology, a total of 229,297,896 paired end read pairs were generated and utilized for de novo assembly of horse gram. Significant BLAST hits were obtained for 26,045 transcripts while, 3,558 transcripts had no hits but contained important conserved domains. A total of 21,887 unigenes were identified. SSRs containing sequences covered 16.25% of the transcriptome with predominant tri- and mono-nucleotides (43%). The total GC content of the transcriptome was found to be 43.44%. Under Gene Ontology response to stimulus, DNA binding and catalytic activity was highly expressed during drought stress conditions. Serine/threonine protein kinase was found to dominate in Enzyme Classification while pathways belonging to ribosome metabolism followed by plant pathogen interaction and plant hormone signal transduction were predominant in Kyoto Encyclopedia of Genes and Genomes analysis. Independent search on plant metabolic network pathways suggested valine degradation, gluconeogenesis and purine nucleotide degradation to be highly influenced under drought stress in horse gram. Transcription factors belonging to NAC, MYB-related, and WRKY families were found highly represented under drought stress. qRT-PCR validated the expression profile for 9 out of 10 genes analyzed in response to drought stress.
Conclusions
De novo transcriptome discovery and analysis has generated enormous information over horse gram genomics. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against drought stress by horse gram. The knowledge generated can be further utilized for exploring other underexploited plants for stress responsive genes and improving plant tolerance.
Publisher
Springer Science and Business Media LLC
Reference92 articles.
1. Bhardwaj J, Yadav SK: Genetic mechanisms of drought stress tolerance, implications of transgenic crops for agriculture. Agroecology and strategies for climate change. Sustainable Agriculture Reviews 8. Edited by: Lichtfouse E. 2012, Netherlands: Springer, 213-235.
2. Bhardwaj J, Yadav SK: Comparative study on biochemical and antioxidant enzymes in a drought tolerant and sensitive variety of horse gram (Macrotyloma uniflorum) under drought stress. Am J Plant Physiol. 2012, 7: 17-29. 10.3923/ajpp.2012.17.29.
3. Prakash BG, Guled MB, Bhosale AM: Identification of suitable horsegram varieties for northern dry zone of karnataka. Karnataka J Agric Sci. 2008, 21: 343-345.
4. Bolbhat SN, Dhumal KN: Induced macromutations in horsegram [Macrotyloma uniflorum(lam.) verdc]. Legume Res. 2009, 32: 278-281.
5. Reddy LVA, Reddy OVS: Improvement of ethanol production in very high gravity fermentation by horse gram (Dolichos biflorus) flour supplementation. Lett Applied Microbiol. 2005, 41: 440-444. 10.1111/j.1472-765X.2005.01767.x.
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献