The prediction of protein-protein interaction networks in rice blast fungus

Author:

He Fei,Zhang Yan,Chen Hao,Zhang Ziding,Peng You-Liang

Abstract

Abstract Background Protein-protein interaction (PPI) maps are useful tools for investigating the cellular functions of genes. Thus far, large-scale PPI mapping projects have not been implemented for the rice blast fungus Magnaporthe grisea, which is responsible for the most severe rice disease. Inspired by recent advances in PPI prediction, we constructed a PPI map of this important fungus. Results Using a well-recognized interolog approach, we have predicted 11,674 interactions among 3,017 M. grisea proteins. Although the scale of the constructed map covers approximately only one-fourth of the M. grisea's proteome, it is the first PPI map for this crucial organism and will therefore provide new insights into the functional genomics of the rice blast fungus. Focusing on the network topology of proteins encoded by known pathogenicity genes, we have found that pathogenicity proteins tend to interact with higher numbers of proteins. The pathogenicity proteins and their interacting partners in the entire network were then used to construct a subnet called a pathogenicity network. These data may provide further clues for the study of these pathogenicity proteins. Finally, it has been established that secreted proteins in M. grisea interact with fewer proteins. These secreted proteins and their interacting partners were also compiled into a network of secreted proteins, which may be helpful in constructing an interactome between the rice blast fungus and rice. Conclusion We predicted the PPIs of M. grisea and compiled them into a database server called MPID. It is hoped that MPID will provide new hints as to the functional genomics of this fungus. MPID is available at http://bioinformatics.cau.edu.cn/zzd_lab/MPID.html.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3