Author:
Beneventi Magda Aparecida,da Silva Orzenil Bonfim,de Sá Maria Eugênia Lisei,Firmino Alexandre Augusto Pereira,de Amorim Regina Maria Santos,Albuquerque Érika Valéria Saliba,da Silva Maria Cristina Mattar,da Silva Joseane Padilha,Campos Magnólia de Araújo,Lopes Marcus José Conceição,Togawa Roberto Coiti,Pappas Georgios Joanis,Grossi–de–Sa Maria Fatima
Abstract
Abstract
Background
Root-knot nematodes (RKN– Meloidogyne genus) present extensive challenges to soybean crop. The soybean line (PI 595099) is known to be resistant against specific strains and races of nematode species, thus its differential gene expression analysis can lead to a comprehensive gene expression profiling in the incompatible soybean-RKN interaction. Even though many disease resistance genes have been studied, little has been reported about phytohormone crosstalk on modulation of ROS signaling during soybean-RKN interaction.
Results
Using 454 technology to explore the common aspects of resistance reaction during both parasitism and resistance phases it was verified that hormone, carbohydrate metabolism and stress related genes were consistently expressed at high levels in infected roots as compared to mock control. Most noteworthy genes include those encoding glycosyltransferases, peroxidases, auxin-responsive proteins and gibberellin-regulated genes. Our data analysis suggests the key role of glycosyltransferases, auxins and components of gibberellin signal transduction, biosynthesis and deactivation pathways in the resistance reaction and their participation in jasmonate signaling and redox homeostasis in mediating aspects of plant growth and responses to biotic stress.
Conclusions
Based on this study we suggest a reasonable model regarding to the complex mechanisms of crosstalk between plant hormones, mainly gibberellins and auxins, which can be crucial to modulate the levels of ROS in the resistance reaction to nematode invasion. The model also includes recent findings concerning to the participation of DELLA-like proteins and ROS signaling controlling plant immune or stress responses. Furthermore, this study provides a dataset of potential candidate genes involved in both nematode parasitism and resistance, which can be tested further for their role in this biological process using functional genomics approaches.
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Bird DM, Williamson VM, Abad P, McCarter J, Danchin EGJ, Castagnone-Sereno P, Opperman CH: The genomes of root-knot nematodes. Annu Rev Phytopathol. 2009, 47: 333-351. 10.1146/annurev-phyto-080508-081839.
2. Ferraz LCCB: Relações parasito-hospedeiro nas Meloidoginoses da Soja. As Meloidoginoses da soja: passado, presente e futuro. Edited by: Ferraz LCB, Asmus GL, Carneiro RG, Mazaffera P, Silva JFV. 2001, Londrina: Embrapa Soja: Sociedade Brasileira de Nematologia, 15-34.
3. Fuller VL, Lilley CJ, Urwin PE: Nematode resistance. New Phytol. 2008, 180: 27-44. 10.1111/j.1469-8137.2008.02508.x.
4. Davis EL, Meyers DM, Burton JW, Barker KR: Resistance to Root-knot, Reniform, and Soybean Cyst Nematodes in Selected Soybean Breeding Lines. J Nematol. 1998, 30 (4S): 530-541.
5. Ibrahim HMM, Hosseini P, Alkharouf NW, Hussein EHA, El-Din AEKYG, Aly MAM, Matthews BF: Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genomics. 2011, 12: 220-10.1186/1471-2164-12-220.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献