Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction

Author:

Beneventi Magda Aparecida,da Silva Orzenil Bonfim,de Sá Maria Eugênia Lisei,Firmino Alexandre Augusto Pereira,de Amorim Regina Maria Santos,Albuquerque Érika Valéria Saliba,da Silva Maria Cristina Mattar,da Silva Joseane Padilha,Campos Magnólia de Araújo,Lopes Marcus José Conceição,Togawa Roberto Coiti,Pappas Georgios Joanis,Grossi–de–Sa Maria Fatima

Abstract

Abstract Background Root-knot nematodes (RKN– Meloidogyne genus) present extensive challenges to soybean crop. The soybean line (PI 595099) is known to be resistant against specific strains and races of nematode species, thus its differential gene expression analysis can lead to a comprehensive gene expression profiling in the incompatible soybean-RKN interaction. Even though many disease resistance genes have been studied, little has been reported about phytohormone crosstalk on modulation of ROS signaling during soybean-RKN interaction. Results Using 454 technology to explore the common aspects of resistance reaction during both parasitism and resistance phases it was verified that hormone, carbohydrate metabolism and stress related genes were consistently expressed at high levels in infected roots as compared to mock control. Most noteworthy genes include those encoding glycosyltransferases, peroxidases, auxin-responsive proteins and gibberellin-regulated genes. Our data analysis suggests the key role of glycosyltransferases, auxins and components of gibberellin signal transduction, biosynthesis and deactivation pathways in the resistance reaction and their participation in jasmonate signaling and redox homeostasis in mediating aspects of plant growth and responses to biotic stress. Conclusions Based on this study we suggest a reasonable model regarding to the complex mechanisms of crosstalk between plant hormones, mainly gibberellins and auxins, which can be crucial to modulate the levels of ROS in the resistance reaction to nematode invasion. The model also includes recent findings concerning to the participation of DELLA-like proteins and ROS signaling controlling plant immune or stress responses. Furthermore, this study provides a dataset of potential candidate genes involved in both nematode parasitism and resistance, which can be tested further for their role in this biological process using functional genomics approaches.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference78 articles.

1. Bird DM, Williamson VM, Abad P, McCarter J, Danchin EGJ, Castagnone-Sereno P, Opperman CH: The genomes of root-knot nematodes. Annu Rev Phytopathol. 2009, 47: 333-351. 10.1146/annurev-phyto-080508-081839.

2. Ferraz LCCB: Relações parasito-hospedeiro nas Meloidoginoses da Soja. As Meloidoginoses da soja: passado, presente e futuro. Edited by: Ferraz LCB, Asmus GL, Carneiro RG, Mazaffera P, Silva JFV. 2001, Londrina: Embrapa Soja: Sociedade Brasileira de Nematologia, 15-34.

3. Fuller VL, Lilley CJ, Urwin PE: Nematode resistance. New Phytol. 2008, 180: 27-44. 10.1111/j.1469-8137.2008.02508.x.

4. Davis EL, Meyers DM, Burton JW, Barker KR: Resistance to Root-knot, Reniform, and Soybean Cyst Nematodes in Selected Soybean Breeding Lines. J Nematol. 1998, 30 (4S): 530-541.

5. Ibrahim HMM, Hosseini P, Alkharouf NW, Hussein EHA, El-Din AEKYG, Aly MAM, Matthews BF: Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genomics. 2011, 12: 220-10.1186/1471-2164-12-220.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3