Author:
Ibiza Vicente P,Cañizares Joaquín,Nuez Fernando
Abstract
Abstract
Background
The EcoTILLING technique allows polymorphisms in target genes of natural populations to be quickly analysed or identified and facilitates the screening of genebank collections for desired traits. We have developed an EcoTILLING platform to exploit Capsicum genetic resources. A perfect example of the utility of this EcoTILLING platform is its application in searching for new virus-resistant alleles in Capsicum genus. Mutations in translation initiation factors (eIF4E, eIF(iso)4E, eIF4G and eIF(iso)4G) break the cycle of several RNA viruses without affecting the plant life cycle, which makes these genes potential targets to screen for resistant germplasm.
Results
We developed and assayed a cDNA-based EcoTILLING platform with 233 cultivated accessions of the genus Capsicum. High variability in the coding sequences of the eIF4E and eIF(iso)4E genes was detected using the cDNA platform. After sequencing, 36 nucleotide changes were detected in the CDS of eIF4E and 26 in eIF(iso)4E. A total of 21 eIF4E haplotypes and 15 eIF(iso)4E haplotypes were identified. To evaluate the functional relevance of this variability, 31 possible eIF4E/eIF(iso)4E combinations were tested against Potato virus Y. The results showed that five new eIF4E variants (pvr2
10
, pvr2
11
, pvr2
12
, pvr2
13
and pvr2
14
) were related to PVY-resistance responses.
Conclusions
EcoTILLING was optimised in different Capsicum species to detect allelic variants of target genes. This work is the first to use cDNA instead of genomic DNA in EcoTILLING. This approach avoids intronic sequence problems and reduces the number of reactions. A high level of polymorphism has been identified for initiation factors, showing the high genetic variability present in our collection and its potential use for other traits, such as genes related to biotic or abiotic stresses, quality or production. Moreover, the new eIF4E and eIF(iso)4E alleles are an excellent collection for searching for new resistance against other RNA viruses.
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. DeWitt D, Bosland PW: The pepper garden. 1993, Berkeley, CA, Ten Speed Press
2. Nuez F, Gil R, Costa J: El cultivo de pimientos, chiles y ajíes. 1996, Madrid, Ediciones Mundi-Prensa
3. Boukema IW: Allelism of genes-controlling resistance to TMV in Capsicum L. Euphytica. 1980, 29 (2): 433-439. 10.1007/BF00025143.
4. Moury B, Palloix A, Selassie KG, Marchoux G: Hypersensitive resistance to Tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica. 1997, 94 (1): 45-52. 10.1023/A:1002997522379.
5. Crosby KM: Pepper. Vegetables II. Edited by: Prohens J, Nuez F, Carena MJ. 2008, New York: Springer, 2: 221-248. full_text.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献