Global regulatory architecture of human, mouse and rat tissue transcriptomes
-
Published:2013-10-20
Issue:1
Volume:14
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Prasad Ajay,Kumar Suchitra Suresh,Dessimoz Christophe,Bleuler Stefan,Laule Oliver,Hruz Tomas,Gruissem Wilhelm,Zimmermann Philip
Abstract
Abstract
Background
Predicting molecular responses in human by extrapolating results from model organisms requires a precise understanding of the architecture and regulation of biological mechanisms across species.
Results
Here, we present a large-scale comparative analysis of organ and tissue transcriptomes involving the three mammalian species human, mouse and rat. To this end, we created a unique, highly standardized compendium of tissue expression. Representative tissue specific datasets were aggregated from more than 33,900 Affymetrix expression microarrays. For each organism, we created two expression datasets covering over 55 distinct tissue types with curated data from two independent microarray platforms. Principal component analysis (PCA) revealed that the tissue-specific architecture of transcriptomes is highly conserved between human, mouse and rat. Moreover, tissues with related biological function clustered tightly together, even if the underlying data originated from different labs and experimental settings. Overall, the expression variance caused by tissue type was approximately 10 times higher than the variance caused by perturbations or diseases, except for a subset of cancers and chemicals. Pairs of gene orthologs exhibited higher expression correlation between mouse and rat than with human. Finally, we show evidence that tissue expression profiles, if combined with sequence similarity, can improve the correct assignment of functionally related homologs across species.
Conclusion
The results demonstrate that tissue-specific regulation is the main determinant of transcriptome composition and is highly conserved across mammalian species.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference39 articles.
1. Bennett CN, Green JE: Unlocking the power of cross-species genomic analyses: identification of evolutionarily conserved breast cancer networks and validation of preclinical models. Breast Cancer Res. 2008, 10: 213-10.1186/bcr2125. 2. Wartman LD, Larson DE, Xiang Z, Ding L, Chen K, Lin L, Cahan P, Klco JM, Welch JS, Li C, Payton JE, Uy GL, Varghese N, Ries RE, Hoock M, Koboldt DC, McLellan MD, Schmidt H, Fulton RS, Abbott RM, Cook L, McGrath SD, Fan X, Dukes AF, Vickery T, Kalicki J, Lamprecht TL, Graubert TA, Tomasson MH, Mardis ER, et al: Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease progression. J Clin Invest. 2011, 121 (4): 1445-1455. 10.1172/JCI45284. 10.1172/JCI45284 3. Yanai I, Graur D, Ophir R: Incongruent expression profiles between human and mouse orthologous genes suggest widespread neutral evolution of transcription control. Omics : J Integr Biol. 2004, 8: 15-24. 10.1089/153623104773547462. 4. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004, 101 (16): 6062-6067. 10.1073/pnas.0400782101. 5. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB: Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A. 2002, 99 (7): 4465-4470. 10.1073/pnas.012025199.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|