Author:
Yi Shaokui,Gao Ze-Xia,Zhao Honghao,Zeng Cong,Luo Wei,Chen Boxiang,Wang Wei-Min
Abstract
Abstract
Background
Blunt snout bream (Megalobrama amblycephala) is an economically important fish species in the Chinese freshwater polyculture system for its delicacy and high economic value. MicroRNAs (miRNAs) play important roles in regulation of almost all biological processes in eukaryotes. Although previous studies have identified thousands of miRNAs from many species, little information is known for miRNAs of M. amblycephala. To investigate functions of miRNAs associated with growth of M. amblycephala, we adopted the Solexa sequencing technology to sequence two small RNA libraries prepared from four growth related tissues (brain, pituitary, liver and muscle) of M. amblycephala using individuals with relatively high and low growth rates.
Results
In this study, we have identified 347 conserved miRNAs (belonging to 123 families) and 22 novel miRNAs in M. amblycephala. Moreover, we observed sequence variants and seed edits of the miRNAs. Of the 5,166 single nucleotide substitutions observed in two libraries, the most abundant were G-to-U (15.9%), followed by U-to-C (12.1%), G-to-A (11.2%), and A to G (11.2%). Subsequently, we compared the expression patterns of miRNAs in the two libraries (big-size group with high growth rate versus small-size group with low growth rate). Results indicated that 27 miRNAs displayed significant differential expressions between the two libraries (p < 0.05). Of these, 16 were significantly up-regulated and 11 were significantly down-regulated in the big-size group compared to the small-size group. Furthermore, stem-loop RT-PCR was applied to validate and profile the expression of the differentially expressed miRNAs in ten tissues, and the result revealed that the conserved miRNAs expressed at higher levels than the novel miRNAs, especially in brain, liver and muscle. Also, targets prediction of differentially expressed miRNAs and KEGG pathway analysis suggested that differentially expressed miRNAs are involved in growth and metabolism, signal transduction, cell cycle, neural development and functions.
Conclusions
The present study provides the first large-scale characterization of miRNAs in M. amblycephala and miRNA profile related to different growth performances. The discovery of miRNA resource from this study is expected to contribute to a better understanding of the miRNAs roles playing in regulating the growth biological processes and the study of miRNA function and phenotype-associated miRNA identification in fish.
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Li S, Cai W, Zhou B: Morphological and biochemical genetic variations among populations of blunt snout bream (Megalobrama amblycephala). J Fish China. 1991, 15: 204-211.
2. Ke H: The artificial reproduction and culture experiment of Megalobrama amblycephala. Acta Hydrobiol Sin. 1965, 5: 282-283.
3. Wang WM: The aquaculture status of blunt snout bream (Megalobrama amblycephala). Scientific Fish Farming. 2009, 4: 44-45.
4. Gao ZX, Luo W, Liu H, Zeng C, Liu XL, Yi SK, Wang WM: Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala). PLoS ONE. 2012, 7 (8): e42637-10.1371/journal.pone.0042637.
5. Luo W, Deng W, Yi SK, Wang WM, Gao ZX: Characterization of 20 polymorphic microsatellites for blunt snout bream (Megalobrama amblycephala) from EST sequences. Conservation Genet Resource. 2013, 5: 499-501. 10.1007/s12686-012-9837-9.