Differences in the transcriptome signatures of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties

Author:

Biller Laura,Davis Paul H,Tillack Manuela,Matthiesen Jenny,Lotter Hannelore,Stanley Samuel L,Tannich Egbert,Bruchhaus Iris

Abstract

Abstract Background The availability of two genetically very similar cell lines (A and B) derived from the laboratory isolate Entamoeba histolytica HM-1:IMSS, which differ in their virulence properties, provides a powerful tool for identifying pathogenicity factors of the causative agent of human amoebiasis. Cell line A is incapable inducing liver abscesses in gerbils, whereas interaction with cell line B leads to considerable abscess formation. Phenotypic characterization of both cell lines revealed that trophozoites from the pathogenic cell line B have a larger cell size, an increased growth rate in vitro, an increased cysteine peptidase activity and higher resistance to nitric oxide stress. To find proteins that may serve as virulence factors, the proteomes of both cell lines were previously studied, resulting in the identification of a limited number of differentially synthesized proteins. This study aims to identify additional genes, serving as virulence factors, or virulence markers. Results To obtain a comprehensive picture of the differences between the cell lines, we compared their transcriptomes using an oligonucleotide-based microarray and confirmed findings with quantitative real-time PCR. Out of 6242 genes represented on the array, 87 are differentially transcribed (≥two-fold) in the two cell lines. Approximately 50% code for hypothetical proteins. Interestingly, only 19 genes show a five-fold or higher differential expression. These include three rab7 GTPases, which were found with a higher abundance in the non-pathogenic cell line A. The aig1-like GTPases are of special interest because the majority of them show higher levels of transcription in the pathogenic cell line B. Only two molecules were found to be differentially expressed between the two cell lines in both this study and our previous proteomic approach. Conclusions In this study we have identified a defined set of genes that are differentially transcribed between the non-pathogenic cell line A and the pathogenic cell line B of E. histolytica. The identification of transcription profiles unique for amoebic cell lines with pathogenic phenotypes may help to elucidate the transcriptional framework of E. histolytica pathogenicity and serve as a basis for identifying transcriptional markers and virulence factors.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference28 articles.

1. Clark CG, Alsmark UC, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noel CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillen N, Duchene M, Nozaki T, Hall N: Structure and content of the Entamoeba histolytica genome. Adv Parasitol. 2007, 65: 51-190. full_text.

2. Davis PH, Zhang X, Guo J, Townsend RR, Stanley SL: Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxiredoxin as an important component of amoebic virulence. Mol Microbiol. 2006, 61: 1523-1532. 10.1111/j.1365-2958.2006.05344.x.

3. Davis PH, Schulze J, Stanley SL: Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin. Mol Biochem Parasitol. 2007, 151: 118-128. 10.1016/j.molbiopara.2006.10.014.

4. MacFarlane RC, Singh U: Identification of differentially expressed genes in virulent and nonvirulent Entamoeba species: potential implications for amebic pathogenesis. Infect Immun. 2006, 74: 340-351. 10.1128/IAI.74.1.340-351.2006.

5. Ehrenkaufer GM, Haque R, Hackney JA, Eichinger DJ, Singh U: Identification of developmentally regulated genes in Entamoeba histolytica : insights into mechanisms of stage conversion in a protozoan parasite. Cell Microbiol. 2007, 9: 1426-1444. 10.1111/j.1462-5822.2006.00882.x.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3