Author:
Marcet-Houben Marina,Ballester Ana-Rosa,de la Fuente Beatriz,Harries Eleonora,Marcos Jose F,González-Candelas Luis,Gabaldón Toni
Abstract
Abstract
Background
Penicillium digitatum is a fungal necrotroph causing a common citrus postharvest disease known as green mold. In order to gain insight into the genetic bases of its virulence mechanisms and its high degree of host-specificity, the genomes of two P. digitatum strains that differ in their antifungal resistance traits have been sequenced and compared with those of 28 other Pezizomycotina.
Results
The two sequenced genomes are highly similar, but important differences between them include the presence of a unique gene cluster in the resistant strain, and mutations previously shown to confer fungicide resistance. The two strains, which were isolated in Spain, and another isolated in China have identical mitochondrial genome sequences suggesting a recent worldwide expansion of the species. Comparison with the closely-related but non-phytopathogenic P. chrysogenum reveals a much smaller gene content in P. digitatum, consistent with a more specialized lifestyle. We show that large regions of the P. chrysogenum genome, including entire supercontigs, are absent from P. digitatum, and that this is the result of large gene family expansions rather than acquisition through horizontal gene transfer. Our analysis of the P. digitatum genome is indicative of heterothallic sexual reproduction and reveals the molecular basis for the inability of this species to assimilate nitrate or produce the metabolites patulin and penicillin. Finally, we identify the predicted secretome, which provides a first approximation to the protein repertoire used during invasive growth.
Conclusions
The complete genome of P. digitatum, the first of a phytopathogenic Penicillium species, is a valuable tool for understanding the virulence mechanisms and host-specificity of this economically important pest.
Publisher
Springer Science and Business Media LLC
Reference89 articles.
1. FAO: FAO Training series. vol. 17. Prevention of post-harvest food losses: food, vegetables and root crops - a training manual. 1989, Rome: FAO
2. Eckert J, Eaks I: Postharvest disorders and diseases of citrus fruits. The citrus industry. Edited by: Reuther W, Calavan E, Carman G. 1989, Berkeley: University of California Press, 179-260.
3. Barkai-Golan R: Chemical control. Postharvest diseases of fruits and vegetables. Edited by: Barkai-Golan R. 2001, Amsterdam: Elsevier, 147-188.
4. Barkai-Golan R: Each fruit or vegetable and its characteristic pathogens. Postharvest diseases of fruits and vegetables. Edited by: Barkai-Golan R. 2001, Amsterdam: Elsevier, 25-32.
5. Gonzalez-Candelas L, Alamar S, Sanchez-Torres P, Zacarias L, Marcos JF: A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biol. 2010, 10: 194-10.1186/1471-2229-10-194.
Cited by
204 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献