Author:
Mahler Kimberly L,Fleming Jessica L,Dworkin Amy M,Gladman Nicholas,Cho Hee-Yeon,Mao Jian-Hua,Balmain Allan,Toland Amanda Ewart
Abstract
Abstract
Background
Mus spretus diverged from Mus musculus over one million years ago. These mice are genetically and phenotypically divergent. Despite the value of utilizing M. musculus and M. spretus for quantitative trait locus (QTL) mapping, relatively little genomic information on M. spretus exists, and most of the available sequence and polymorphic data is for one strain of M. spretus, Spret/Ei. In previous work, we mapped fifteen loci for skin cancer susceptibility using four different M. spretus by M. musculus F1 backcrosses. One locus, skin tumor susceptibility 5 (Skts5) on chromosome 12, shows strong linkage in one cross.
Results
To identify potential candidate genes for Skts5, we sequenced 65 named and unnamed genes and coding elements mapping to the peak linkage area in outbred spretus, Spret/EiJ, FVB/NJ, and NIH/Ola. We identified polymorphisms in 62 of 65 genes including 122 amino acid substitutions. To look for polymorphisms consistent with the linkage data, we sequenced exons with amino acid polymorphisms in two additional M. spretus strains and one additional M. musculus strain generating 40.1 kb of sequence data. Eight candidate variants were identified that fit with the linkage data. To determine the degree of variation across M. spretus, we conducted phylogenetic analyses. The relatedness of the M. spretus strains at this locus is consistent with the proximity of region of ascertainment of the ancestral mice.
Conclusion
Our analyses suggest that, if Skts5 on chromosome 12 is representative of other regions in the genome, then published genomic data for Spret/EiJ are likely to be of high utility for genomic studies in other M. spretus strains.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Bonhomme F, Guenet JL: The laboratory mouse and its wild relatives. Genetic variants and strains of the laboratory mouse. Edited by: Lyon MF, Rastan S, Brown SDM. 1996, Oxford, England: Oxford University Press, 2: 1577-1596. 3
2. Hochepied T, Schoonjans L, Staelens J, Kreemers V, Danloy S, Puimege L, Collen D, Van Roy F, Libert C: Breaking the species barrier: derivation of germline-competent embryonic stem sells from Mus spretus × C57BL/6 Hybrids. Stem Cells. 2004, 22 (4): 441-447. 10.1634/stemcells.22-4-441.
3. She JX, Bonhomme F, Boursot P, Thaler L, Catzeflis FM: Molecular phylogenics in the genus Mus: comparative analysis of electrophoretic scnDNA hybridization and mtDNA RFLP data. Biol J Linn Soc. 1990, 41 (1): 83-103. 10.1111/j.1095-8312.1990.tb00823.x.
4. Suzuki H, Shimada T, Terashima M, Tsuchiya K, Aplin K: Temporal, spatial, and ecological modes of evolution of Eurasian Mus based on mitochondrial and nuclear gene sequences. Mol Phylogenet Evol. 2004, 33 (3): 626-646. 10.1016/j.ympev.2004.08.003.
5. Zhang J, Wheeler DA, Yakub I, Wei S, Sood R, Rowe W, Liu PP, Gibbs RA, Buetow KH: SNPdetector: A Software Tool for Sensitive and Accurate SNP Detection. PLoS Comput Biol. 2005, 1 (5): e53-10.1371/journal.pcbi.0010053.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献