Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies

Author:

Ramalho-Ortigão Marcelo,Jochim Ryan C,Anderson Jennifer M,Lawyer Phillip G,Pham Van-My,Kamhawi Shaden,Valenzuela Jesus G

Abstract

Abstract Background In sandflies, the blood meal is responsible for the induction of several physiologic processes that culminate in egg development and maturation. During blood feeding, infected sandflies are also able to transmit the parasite Leishmania to a suitable host. Many blood-induced molecules play significant roles during Leishmania development in the sandfly midgut, including parasite killing within the endoperitrophic space. In this work, we randomly sequenced transcripts from three distinct high quality full-length female Phlebotomus papatasi midgut-specific cDNA libraries from sugar-fed, blood-fed and Leishmania major-infected sandflies. Furthermore, we compared the transcript expression profiles from the three different cDNA libraries by customized bioinformatics analysis and validated these findings by semi-quantitative PCR and real-time PCR. Results Transcriptome analysis of 4010 cDNA clones resulted in the identification of the most abundant P. papatasi midgut-specific transcripts. The identified molecules included those with putative roles in digestion and peritrophic matrix formation, among others. Moreover, we identified sandfly midgut transcripts that are expressed only after a blood meal, such as microvilli associated-like protein (PpMVP1, PpMVP2 and PpMVP3), a peritrophin (PpPer1), trypsin 4 (PpTryp4), chymotrypsin PpChym2, and two unknown proteins. Of interest, many of these overabundant transcripts such as PpChym2, PpMVP1, PpMVP2, PpPer1 and PpPer2 were of lower abundance when the sandfly was given a blood meal in the presence of L. major. Conclusion This tissue-specific transcriptome analysis provides a comprehensive look at the repertoire of transcripts present in the midgut of the sandfly P. papatasi. Furthermore, the customized bioinformatic analysis allowed us to compare and identify the overall transcript abundance from sugar-fed, blood-fed and Leishmania-infected sandflies. The suggested upregulation of specific transcripts in a blood-fed cDNA library were validated by real-time PCR, suggesting that this customized bioinformatic analysis is a powerful and accurate tool useful in analysing expression profiles from different cDNA libraries. Additionally, the findings presented in this work suggest that the Leishmania parasite is modulating key enzymes or proteins in the gut of the sandfly that may be beneficial for its establishment and survival.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3