Author:
Yamamoto Masahiro,Yamaguchi Rui,Munakata Kaori,Takashima Kiyoe,Nishiyama Mitsue,Hioki Kyoji,Ohnishi Yasuyuki,Nagasaki Masao,Imoto Seiya,Miyano Satoru,Ishige Atsushi,Watanabe Kenji
Abstract
Abstract
Background
Epidemiological studies have suggested that the encounter with commensal microorganisms during the neonatal period is essential for normal development of the host immune system. Basic research involving gnotobiotic mice has demonstrated that colonization at the age of 5 weeks is too late to reconstitute normal immune function. In this study, we examined the transcriptome profiles of the large intestine (LI), small intestine (SI), liver (LIV), and spleen (SPL) of 3 bacterial colonization models—specific pathogen- free mice (SPF), ex-germ-free mice with bacterial reconstitution at the time of delivery (0WexGF), and ex-germ-free mice with bacterial reconstitution at 5 weeks of age (5WexGF)—and compared them with those of germ-free (GF) mice.
Results
Hundreds of genes were affected in all tissues in each of the colonized models; however, a gene set enrichment analysis method, MetaGene Profiler (MGP), demonstrated that the specific changes of Gene Ontology (GO) categories occurred predominantly in 0WexGF LI, SPF SI, and 5WexGF SPL, respectively. MGP analysis on signal pathways revealed prominent changes in toll-like receptor (TLR)- and type 1 interferon (IFN)-signaling in LI of 0WexGF and SPF mice, but not 5WexGF mice, while 5WexGF mice showed specific changes in chemokine signaling. RT-PCR analysis of TLR-related genes showed that the expression of interferon regulatory factor 3 (Irf3), a crucial rate-limiting transcription factor in the induction of type 1 IFN, prominently decreased in 0WexGF and SPF mice but not in 5WexGF and GF mice.
Conclusion
The present study provides important new information regarding the molecular mechanisms of the so-called "hygiene hypothesis".
Publisher
Springer Science and Business Media LLC
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献