Expression profile of cuticular genes of silkworm, Bombyx mori

Author:

Liang Jiubo,Zhang Liang,Xiang Zhonghuai,He Ningjia

Abstract

Abstract Background Insect cuticle plays essential roles in many physiological functions. During molting and metamorphosis tremendous changes occur in silkworm cuticle where multiple proteins exist and genes encoding them constitute about 1.5% of all Bombyx mori genes. Results In an effort to determine their expression profiles, a microarray-based investigation was carried out using mRNA collected from larvae to pupae. The results showed that a total of 6676 genes involved in various functions and physiological pathways were activated. The vast majority (93%) of cuticular protein genes were expressed in selected stages with varying expression patterns. There was no correlation between expression patterns and the presence of conserved motifs. Twenty-six RR genes distributed in chromosome 22 were co-expressed at the larval and wandering stages. The 2 kb upstream regions of these genes were further analyzed and three putative elements were identified. Conclusions Data from the present study provide, for the first time, a comprehensive expression profile of genes in silkworm epidermal tissues and evidence that putative elements exist to allow massive production of mRNAs from specific cuticular protein genes.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference59 articles.

1. Andersen SO: Cuticular Sclerotization and Tanning. Comprehensive Molecular Insect Science. Edited by: Gilbert LI, Iatrou K, Gill S. 2005, Oxford: Elsevier Pergamon Press, 4: 145-170. full_text.

2. Chapman RF: The Insects: Structure and Function. 1969, London: University Press Ltd

3. Weber H, Weidner H: Grundniss der Insectenkunde. 1974, Stuttgart: Gustav Fischer Verlag

4. Fretter V, Graham A: A Functional Anatomy of Invertebrates. 1976, Academic Press, London, New-York, San Francisco

5. Meglitsch PA, Schram FR: Invertebrate Zoology. 1991, New York: Oxford University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3