Author:
Bart Marieke J,van Gent Marjolein,van der Heide Han GJ,Boekhorst Jos,Hermans Peter,Parkhill Julian,Mooi Frits R
Abstract
Abstract
Background
Despite vaccination since the 1950s, pertussis has persisted and resurged. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of Bordetella pertussis strains with a novel allele for the pertussis toxin (Ptx) promoter, ptxP3, which have replaced resident ptxP1 strains. Compared to ptxP1 strains, ptxP3 produce more Ptx resulting in increased virulence and immune suppression. To elucidate how B. pertussis has adapted to vaccination, we compared genome sequences of two ptxP3 strains with four strains isolated before and after the introduction vaccination.
Results
The distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The ptxP3 strains were found to have diverged recently from modern ptxP1 strains. Differences between ptxP3 and modern ptxP1 strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in ptxP3 strains relative to modern ptxP1 strains.
Conclusions
Our work suggests that B. pertussis adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Mooi FR: Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. Infect Genet Evol. 2010, 10 (1): 36-49. 10.1016/j.meegid.2009.10.007.
2. Diavatopoulos DA, Cummings CA, van der Heide HG, van Gent M, Liew S, Relman DA, Mooi FR: Characterization of a highly conserved island in the otherwise divergent Bordetella holmesii and Bordetella pertussis genomes. J Bacteriol. 2006, 188 (24): 8385-8394. 10.1128/JB.01081-06.
3. van der Zee A, Groenendijk H, Peeters M, Mooi FR: The differentiation of Bordetella parapertussis and Bordetella bronchiseptica from humans and animals as determined by DNA polymorphism mediated by two different insertion sequence elements suggests their phylogenetic relationship. Int J Syst Bacteriol. 1996, 46 (3): 640-647. 10.1099/00207713-46-3-640.
4. Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR: Bordetella pertussis, the Causative Agent of Whooping Cough, Evolved from a Distinct, Human-Associated Lineage of B. bronchiseptica. PLoSPathog. 2005, 1 (4): 373-383.
5. van der Zee A, Mooi F, Van Embden J, Musser J: Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J Bacteriol. 1997, 179 (21): 6609-6617.
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献