SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato

Author:

Corrado Giandomenico,Piffanelli Pietro,Caramante Martina,Coppola Mariangela,Rao Rosa

Abstract

Abstract Background The tomato (Solanum lycopersium L.) is the most widely grown vegetable in the world. It was domesticated in Latin America and Italy and Spain are considered secondary centers of diversification. This food crop has experienced severe genetic bottlenecks and modern breeding activities have been characterized by trait introgression from wild species and divergence in different market classes. Results With the aim to examine patterns of polymorphism, characterize population structure and identify putative loci under positive selection, we genotyped 214 tomato accessions (which include cultivated landraces, commercial varieties and wild relatives) using a custom-made Illumina SNP-panel. Most of the 175 successfully scored SNP loci were found to be polymorphic. Population structure analysis and estimates of genetic differentiation indicated that landraces constitute distinct sub-populations. Furthermore, contemporary varieties could be separated in groups (processing, fresh and cherry) that are consistent with the recent breeding aimed at market-class specialization. In addition, at the 95% confidence level, we identified 30, 34 and 37 loci under positive selection between landraces and each of the groups of commercial variety (cherry, processing and fresh market, respectively). Their number and genomic locations imply the presence of some extended regions with high genetic variation between landraces and contemporary varieties. Conclusions Our work provides knowledge concerning the level and distribution of genetic variation within cultivated tomato landraces and increases our understanding of the genetic subdivision of contemporary varieties. The data indicate that adaptation and selection have led to a genomic signature in cultivated landraces and that the subpopulation structure of contemporary varieties is shaped by directed breeding and largely of recent origin. The genomic characterization presented here is an essential step towards a future exploitation of the available tomato genetic resources in research and breeding programs.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference63 articles.

1. Bauchet G, Causse M: Genetic diversity in tomato (Solanum lycopersicum) and its wild relatives. Genetic Diversity in Plants. Edited by: Caliskan M. 2012, Europe, Rijeka Croatia: InTech, 133-162.

2. Dies MJ, Nuez F: Tomato. Vegetables II. Edited by: Prohens J, Nuez F. 2008, New York: Springer, 249-326.

3. Soressi GP: Il pomodoro. 1969, Bologna: Edagricole

4. Bai YL, Lindhout P: Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?. Ann Bot. 2007, 100 (5): 1085-1094. 10.1093/aob/mcm150.

5. Miller JC, Tanksley SD: RFLP analysis of phylogenetic-relationships and genetic-variation in the genus Lycopersicon. Theor Appl Genet. 1990, 80 (4): 437-448.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3