Genome-wide analysis of human hotspot intersected genes highlights the roles of meiotic recombination in evolution and disease

Author:

Zhou Tao,Hu Zhibin,Zhou Zuomin,Guo Xuejiang,Sha Jiahao

Abstract

Abstract Background Meiotic recombination events are not randomly located, but rather cluster at hotspot regions. Recently, the fine-scale mapping of genome-wide human recombination hotspots was performed. Here, we systematically analyzed the evolutionary and disease-associated features of hotspots that overlapped with protein-coding genes. Results In this study, we defined hotspot intersected genes as HI genes. We found that HI genes were prone to be located in the extracellular part and were functionally enriched in cell-to-cell communication. Tissue-specific genes and secreted protein encoding genes were overrepresented in HI genes, while housekeeping genes were underrepresented. Compared to slowly evolving housekeeping genes and random genes with lower recombination rates, HI genes evolved faster. The fact that brain and blood specific genes were overrepresented in HI genes indicates that they may be involved in the evolution of human intelligence and the immune system. We also found that genes related to disease were enriched in HI genes, especially genes with disease-associated chromosomal rearrangements. Hotspot sequence motifs were overrepresented in common sequences of HI genes and genes with disease-associated chromosomal rearrangements. We further listed repeat elements that were enriched both in hotspots and genes with disease-associated chromosomal rearrangements. Conclusion HI genes are evolving and may be involved in the generation of key features of human during evolution. Disease-associated genes may be by-products of meiotic recombination. In addition, hotspot sequence motifs and repeat elements showed the connection between meiotic recombination and genes with disease-associated chromosomal rearrangements at the sequence level. Our study will enable us to better understand the evolutionary and biological significance of human meiotic recombination.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3