Author:
Cantacessi Cinzia,Campbell Bronwyn E,Young Neil D,Jex Aaron R,Hall Ross S,Presidente Paul JA,Zawadzki Jodi L,Zhong Weiwei,Aleman-Meza Boanerges,Loukas Alex,Sternberg Paul W,Gasser Robin B
Abstract
Abstract
Background
The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this gastric nematode is enclosed in a cuticle (sheath) and, once ingested with herbage by the host, undergoes an exsheathment process that marks the transition from the free-living (L3) to the parasitic (xL3) stage. This study explored changes in gene transcription associated with this transition and predicted, based on comparative analysis, functional roles for key transcripts in the metabolic pathways linked to larval development.
Results
Totals of 101,305 (L3) and 105,553 (xL3) expressed sequence tags (ESTs) were determined using 454 sequencing technology, and then assembled and annotated; the most abundant transcripts encoded transthyretin-like, calcium-binding EF-hand, NAD(P)-binding and nucleotide-binding proteins as well as homologues of Ancylostoma-secreted proteins (ASPs). Using an in silico-subtractive analysis, 560 and 685 sequences were shown to be uniquely represented in the L3 and xL3 stages, respectively; the transcripts encoded ribosomal proteins, collagens and elongation factors (in L3), and mainly peptidases and other enzymes of amino acid catabolism (in xL3). Caenorhabditis elegans orthologues of transcripts that were uniquely transcribed in each L3 and xL3 were predicted to interact with a total of 535 other genes, all of which were involved in embryonic development.
Conclusion
The present study indicated that some key transcriptional alterations taking place during the transition from the L3 to the xL3 stage of H. contortus involve genes predicted to be linked to the development of neuronal tissue (L3 and xL3), formation of the cuticle (L3) and digestion of host haemoglobin (xL3). Future efforts using next-generation sequencing and bioinformatic technologies should provide the efficiency and depth of coverage required for the determination of the complete transcriptomes of different developmental stages and/or tissues of H. contortus as well as the genome of this important parasitic nematode. Such advances should lead to a significantly improved understanding of the molecular biology of H. contortus and, from an applied perspective, to novel methods of intervention.
Publisher
Springer Science and Business Media LLC
Reference96 articles.
1. Nikolaou S, Gasser RB: Prospects for exploring molecular developmental processes in Haemonchus contortus. Int J Parasitol. 2006, 36: 859-868. 10.1016/j.ijpara.2006.04.007.
2. Veglia F: The anatomy and life history of the Haemonchus contortus (Rud). Rep Dir Vet Res. 1915, 3-4: 347-500.
3. Davey KG, Sommerville RI, Rogers WP: The effect of ethoxyzolamide, an analogue of insect juvenile hormone, nor-adrenaline and iodine on changes in the optical path difference in the excretory cells and oesophagus during exsheathment in Haemonchus contortus. Int J Parasitol. 1982, 12: 509-513. 10.1016/0020-7519(82)90045-5.
4. Rogers WP, Petronijevic T: The infective stage and development of nematodes. Biology and Control of Endoparasites. Edited by: Symons LEA, Donald AD, Dineen JK. 1982, Academic Press, Australia, 3-28.
5. Petronijevic T, Rogers WP: Gene activity and the development of early parasitic stages of nematodes. Int J Parasitol. 1983, 13: 197-199. 10.1016/0020-7519(83)90012-7.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献