Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels

Author:

Rismani-Yazdi Hamid,Haznedaroglu Berat Z,Bibby Kyle,Peccia Jordan

Abstract

Abstract Background Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. The paucity of microalgae genome sequences, however, limits gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for the non-model microalgae species, Dunaliella tertiolecta, and identify pathways and genes of importance related to biofuel production. Results Next generation DNA pyrosequencing technology applied to D. tertiolecta transcripts produced 1,363,336 high quality reads with an average length of 400 bases. Following quality and size trimming, ~ 45% of the high quality reads were assembled into 33,307 isotigs with a 31-fold coverage and 376,482 singletons. Assembled sequences and singletons were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) identifiers. These analyses identified the majority of lipid and starch biosynthesis and catabolism pathways in D. tertiolecta. Conclusions The construction of metabolic pathways involved in the biosynthesis and catabolism of fatty acids, triacylglycrols, and starch in D. tertiolecta as well as the assembled transcriptome provide a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference77 articles.

1. Peaking of world oil production: Impacts, mitigation, and risk management. [http://www.netl.doe.gov]

2. Chisti Y: Biodiesel from microalgae. Biotechnology Advances. 2007, 25: 294-306. 10.1016/j.biotechadv.2007.02.001.

3. Kurano N, Sasaki T, Miyachi S: Carbon dioxide and microalgae. Advances In Chemical Conversions For Mitigating Carbon Dioxide. 1998, Amsterdam: Elsevier Science Publ B V, 114: 55-63. full_text.

4. NREL: A look back at the US Department of Engergy's aquatic species program: biodiesel from algae, report NREL/TP-580-24190. 1998, National Renewable Energy Labs

5. Yun Y-S, Lee SB, Park JM, Lee C-I, Yang J-W: Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology. 1997, 69: 451-455. 10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M.

Cited by 245 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3