Author:
Rismani-Yazdi Hamid,Haznedaroglu Berat Z,Bibby Kyle,Peccia Jordan
Abstract
Abstract
Background
Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. The paucity of microalgae genome sequences, however, limits gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for the non-model microalgae species, Dunaliella tertiolecta, and identify pathways and genes of importance related to biofuel production.
Results
Next generation DNA pyrosequencing technology applied to D. tertiolecta transcripts produced 1,363,336 high quality reads with an average length of 400 bases. Following quality and size trimming, ~ 45% of the high quality reads were assembled into 33,307 isotigs with a 31-fold coverage and 376,482 singletons. Assembled sequences and singletons were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) identifiers. These analyses identified the majority of lipid and starch biosynthesis and catabolism pathways in D. tertiolecta.
Conclusions
The construction of metabolic pathways involved in the biosynthesis and catabolism of fatty acids, triacylglycrols, and starch in D. tertiolecta as well as the assembled transcriptome provide a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Peaking of world oil production: Impacts, mitigation, and risk management. [http://www.netl.doe.gov]
2. Chisti Y: Biodiesel from microalgae. Biotechnology Advances. 2007, 25: 294-306. 10.1016/j.biotechadv.2007.02.001.
3. Kurano N, Sasaki T, Miyachi S: Carbon dioxide and microalgae. Advances In Chemical Conversions For Mitigating Carbon Dioxide. 1998, Amsterdam: Elsevier Science Publ B V, 114: 55-63. full_text.
4. NREL: A look back at the US Department of Engergy's aquatic species program: biodiesel from algae, report NREL/TP-580-24190. 1998, National Renewable Energy Labs
5. Yun Y-S, Lee SB, Park JM, Lee C-I, Yang J-W: Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology. 1997, 69: 451-455. 10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M.
Cited by
249 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献