Combining next-generation pyrosequencing with microarray for large scale expression analysis in non-model species

Author:

Bellin Diana,Ferrarini Alberto,Chimento Antonio,Kaiser Olaf,Levenkova Natasha,Bouffard Pascal,Delledonne Massimo

Abstract

Abstract Background The next generation sequencing technologies provide new options to characterize the transcriptome and to develop affordable tools for functional genomics. We describe here an innovative approach for this purpose and demonstrate its potential also for non-model species. Results The method we developed is based on 454 sequencing of 3' cDNA fragments from a normalized library constructed from pooled RNAs to generate, through de novo reads assembly, a large catalog of unique transcripts in organisms for which a comprehensive collection of transcripts or the complete genome sequence, is not available. This "virtual transcriptome" provides extensive coverage depth, and can be used for the setting up of a comprehensive microarray based expression analysis. We evaluated the potential of this approach by monitoring gene expression during berry maturation in Vitis vinifera as if no other sequence information was available for this species. The microarray designed on the berries' transcriptome derived from half of a 454 run detected the expression of 19,609 genes, and proved to be more informative than one of the most comprehensive grape microarrays available to date, the GrapeArray 1.2 developed by the Italian-French Public Consortium for Grapevine Genome Characterization, which could detect the expression of 15,556 genes in the same samples. Conclusion This approach provides a powerful method to rapidly build up an extensive catalog of unique transcripts that can be successfully used to develop a microarray for large scale analysis of gene expression in any species, without the need for prior sequence knowledge.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3