Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection
-
Published:2011-11-22
Issue:1
Volume:12
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Ahmad Riaz,Parfitt Dan E,Fass Joseph,Ogundiwin Ebenezer,Dhingra Amit,Gradziel Thomas M,Lin Dawei,Joshi Nikhil A,Martinez-Garcia Pedro J,Crisosto Carlos H
Abstract
Abstract
Background
The application of next generation sequencing technologies and bioinformatic scripts to identify high frequency SNPs distributed throughout the peach genome is described. Three peach genomes were sequenced using Roche 454 and Illumina/Solexa technologies to obtain long contigs for alignment to the draft 'Lovell' peach sequence as well as sufficient depth of coverage for 'in silico' SNP discovery.
Description
The sequences were aligned to the 'Lovell' peach genome released April 01, 2010 by the International Peach Genome Initiative (IPGI). 'Dr. Davis', 'F8, 1-42' and 'Georgia Belle' were sequenced to add SNPs segregating in two breeding populations, Pop DF ('Dr. Davis' × 'F8, 1-42') and Pop DG ('Dr. Davis' × 'Georgia Belle'). Roche 454 sequencing produced 980,000 total reads with 236 Mb sequence for 'Dr. Davis' and 735,000 total reads with 172 Mb sequence for 'F8, 1-42'. 84 bp × 84 bp paired end Illumina/Solexa sequences yielded 25.5, 21.4, 25.5 million sequences for 'Dr. Davis', 'F8, 1-42' and 'Georgia Belle', respectively. BWA/SAMtools were used for alignment of raw reads and SNP detection, with custom PERL scripts for SNP filtering. Velvet's Columbus module was used for sequence assembly. Comparison of aligned and overlapping sequences from both Roche 454 and Illumina/Solexa resulted in the selection of 6654 high quality SNPs for 'Dr. Davis' vs. 'F8, 1-42' and 'Georgia Belle', distributed on eight major peach genome scaffolds as defined from the 'Lovell' assembly.
Conclusion
The eight scaffolds contained about 215-225 Mb of peach genomic sequences with one SNP/~ 40,000 bases. All sequences from Roche 454 and Illumina/Solexa have been submitted to NCBI for public use in the Short Read Archive database. SNPs have been deposited in the NCBI SNP database.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference24 articles.
1. Pozzi C, Vecchietti A: Peach Structural Genomics. Genetics and Genomics of Rosaceae, Plant Genetics and Genomics: Crops and Models 6. Edited by: Folta KM, Gardiner SE. 2009, Springer Science+Business Media, LLC, 235-257. 2. Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arus P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG: Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet. 2005, 110: 1419-1428. 10.1007/s00122-005-1968-x. 3. Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG: A framework physical map for peach, a model Rosaceae species. Tree Genetics and Genomes. 2008, 4: 745-756. 10.1007/s11295-008-0147-z. 4. Sosinski B, Shulaev V, Dhingra A, Kalyanaraman A, Bumgarner R, Rokhsar D, Verde I, Velasco R, Abbott AG: Rosaceaous Genome Sequencing: Perspectives and Progress. Genetics and Genomics of Rosaceae, Plant Genetics and Genomics: Crops and Models 6. Edited by: Folta KM, Gardiner SE. 2009, Springer Science+Business Media, LLC, 601-615. 5. Lijavetzky D, Cabezas JA, Ibáñez A, Rodríguez V, Martínez-Zapater JM: High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics. 2007, 8: 424-10.1186/1471-2164-8-424.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|