Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity
-
Published:2009-09-05
Issue:1
Volume:10
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Ashraf Nasheeman,Ghai Deepali,Barman Pranjan,Basu Swaraj,Gangisetty Nagaraju,Mandal Mihir K,Chakraborty Niranjan,Datta Asis,Chakraborty Subhra
Abstract
Abstract
Background
The ultimate phenome of any organism is modulated by regulated transcription of many genes. Characterization of genetic makeup is thus crucial for understanding the molecular basis of phenotypic diversity, evolution and response to intra- and extra-cellular stimuli. Chickpea is the world's third most important food legume grown in over 40 countries representing all the continents. Despite its importance in plant evolution, role in human nutrition and stress adaptation, very little ESTs and differential transcriptome data is available, let alone genotype-specific gene signatures. Present study focuses on Fusarium wilt responsive gene expression in chickpea.
Results
We report 6272 gene sequences of immune-response pathway that would provide genotype-dependent spatial information on the presence and relative abundance of each gene. The sequence assembly led to the identification of a Ca Unigene set of 2013 transcripts comprising of 973 contigs and 1040 singletons, two-third of which represent new chickpea genes hitherto undiscovered. We identified 209 gene families and 262 genotype-specific SNPs. Further, several novel transcription regulators were identified indicating their possible role in immune response. The transcriptomic analysis revealed 649 non-cannonical genes besides many unexpected candidates with known biochemical functions, which have never been associated with pathostress-responsive transcriptome.
Conclusion
Our study establishes a comprehensive catalogue of the immune-responsive root transcriptome with insight into their identity and function. The development, detailed analysis of Ca EST datasets and global gene expression by microarray provide new insight into the commonality and diversity of organ-specific immune-responsive transcript signatures and their regulated expression shaping the species specificity at genotype level. This is the first report on differential transcriptome of an unsequenced genome during vascular wilt.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference109 articles.
1. White JA, Todd J, Newman T, Focks N, Girke T, de Ilarduya M, Jaworski JG, Ohlrogge JB, Benning C: A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol. 2000, 124: 1582-1594. 10.1104/pp.124.4.1582. 2. Ewing RM, Kahla AB, Poirot O, Lopez F, Audic S, Claverie JM: Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res. 1999, 9: 950-959. 10.1101/gr.9.10.950. 3. Jantasuriyarat C, Gowda M, Haller K, Hatfield J, Lu G, Stahlberg E, Zhou B, Li H, Kim H, Yu Y, Dean RA, Wing RA, Soderlund C, Wang GL: Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiol. 2005, 138: 105-115. 10.1104/pp.104.055624. 4. Ramírez M, Graham MA, Blanco-López L, Silvente S, Medrano-Soto A, Blair MW, Hernández G, Vance CP, Lara M: Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol. 2005, 137: 1211-1227. 10.1104/pp.104.054999. 5. Udall JA, Swanson JM, Haller K, Rapp RA, Sparks ME, Hatfield J, Yu Y, Wu Y, Dowd C, Arpat AB, et al: A global assembly of cotton ESTs. Genome Res. 2006, 16: 441-450. 10.1101/gr.4602906.
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|