Author:
Zhang Jin-Ye,Pan Min-Hui,Sun Zhi-Ya,Huang Shu-Jing,Yu Zi-Shu,Liu Di,Zhao Dan-Hong,Lu Cheng
Abstract
Abstract
Background
Apoptosis is regulated in an orderly fashion by a series of genes, and has a crucial role in important physiological processes such as growth development, immunological response and so on. Recently, substantial studies have been undertaken on apoptosis in model animals including humans, fruit flies, and the nematode. However, the lack of genomic data for silkworms limits their usefulness in apoptosis studies, despite the advantages of silkworm as a representative of Lepidoptera and an effective model system. Herein we have identified apoptosis-related genes in the silkworm Bombyx mori and compared them to those from insects, mammals, and nematodes.
Results
From the newly assembled genome databases, a genome-wide analysis of apoptosis-related genes in Bombyx mori was performed using both nucleotide and protein Blast searches. Fifty-two apoptosis-related candidate genes were identified, including five caspase family members, two tumor necrosis factor (TNF) superfamily members, one Bcl-2 family member, four baculovirus IAP (inhibitor of apoptosis) repeat (BIR) domain family members and 1 RHG (Reaper, Hid, Grim, and Sickle; Drosophila cell death activators) family member. Moreover, we identified a new caspase family member, BmCaspase-New, two splice variants of BmDronc, and Bm3585, a mammalian TNF superfamily member homolog. Twenty-three of these apoptosis-related genes were cloned and sequenced using cDNA templates isolated from BmE-SWU1 cells. Sequence analyses revealed that these genes could have key roles in apoptosis.
Conclusions
Bombyx mori possesses potential apoptosis-related genes. We hypothesized that the classic intrinsic and extrinsic apoptotic pathways potentially are active in Bombyx mori. These results lay the foundation for further apoptosis-related study in Bombyx mori.
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. Carl V: Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte. 1842, (Alytes obstetricans) 130 (Jent und Gassman)
2. Lockshin RA, Zakeri Z: Apoptosis, autophagy, and more. The International Journal of Biochemistry & Cell Biology. 2004, 36: 2405-2419.
3. Kerr J, Wyllie A, Currie A: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. BrJCancer. 1972, 26: 239-257.
4. Bursch W: The autophagosomal lysosomal compartment in programmed cell death. Cell Death Differ. 2001, 8: 569-581. 10.1038/sj.cdd.4400852.
5. Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH: Apoptosis and Autophagy Function Cooperatively for the Efficacious Execution of Programmed Nurse Cell Death During Drosophila virilis Oogenesis. Autophagy. 2007, 3 (2): 130-132.
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献