Molecular determinants archetypical to the phylum Nematoda

Author:

Yin Yong,Martin John,Abubucker Sahar,Wang Zhengyuan,Wyrwicz Lucjan,Rychlewski Leszek,McCarter James P,Wilson Richard K,Mitreva Makedonka

Abstract

Abstract Background Nematoda diverged from other animals between 600–1,200 million years ago and has become one of the most diverse animal phyla on earth. Most nematodes are free-living animals, but many are parasites of plants and animals including humans, posing major ecological and economical challenges around the world. Results We investigated phylum-specific molecular characteristics in Nematoda by exploring over 214,000 polypeptides from 32 nematode species including 27 parasites. Over 50,000 nematode protein families were identified based on primary sequence, including ~10% with members from at least three different species. Nearly 1,600 of the multi-species families did not share homology to Pfam domains, including a total of 758 restricted to Nematoda. Majority of the 462 families that were conserved among both free-living and parasitic species contained members from multiple nematode clades, yet ~90% of the 296 parasite-specific families originated only from a single clade. Features of these protein families were revealed through extrapolation of essential functions from observed RNAi phenotypes in C. elegans, bioinformatics-based functional annotations, identification of distant homology based on protein folds, and prediction of expression at accessible nematode surfaces. In addition, we identified a group of nematode-restricted sequence features in energy-generating electron transfer complexes as potential targets for new chemicals with minimal or no toxicity to the host. Conclusion This study identified and characterized the molecular determinants that help in defining the phylum Nematoda, and therefore improved our understanding of nematode protein evolution and provided novel insights for the development of next generation parasite control strategies.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference84 articles.

1. Lambshead PJ, Brown CJ, Ferrero TJ, Hawkins LE, Smith CR, Mitchell NJ: Biodiversity of nematode assemblages from the region of the Clarion-Clipperton Fracture Zone, an area of commercial mining interest. BMC ecology. 2003, 3: 1-

2. Blaxter M: Caenorhabditis elegans is a nematode. Science. 1998, 282 (5396): 2041-2046.

3. WHO: Deworming for Health and Development. The Third Global Meeting of the Partners for Parasite Control. 2004, Geneva: World Health Organization, [http://whqlibdoc.who.int/hq/2005/WHO_CDS_CPE_PVC_2005.14.pdf]

4. Barker KR, Hussey RS, Krusberg LR, Bird GW, Dunn RA, Ferris VR, Freckman DW, Gabriel CJ, Grewal PS, Macguidwin AE, et al: Plant and soil nematodes-societal impact and focus for the future. Journal of Nematology. 1994, 26: 127-137.

5. Ranjit N, Jones MK, Stenzel DJ, Gasser RB, Loukas A: A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy. Int J Parasitol. 2006, 36 (6): 701-710.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3