Author:
Aggarwal Rajat,Benatti Thiago R,Gill Navdeep,Zhao Chaoyang,Chen Ming-Shun,Fellers John P,Schemerhorn Brandon J,Stuart Jeff J
Abstract
Abstract
Background
The Hessian fly (Mayetiola destructor) is an important insect pest of wheat. It has tractable genetics, polytene chromosomes, and a small genome (158 Mb). Investigation of the Hessian fly presents excellent opportunities to study plant-insect interactions and the molecular mechanisms underlying genome imprinting and chromosome elimination. A physical map is needed to improve the ability to perform both positional cloning and comparative genomic analyses with the fully sequenced genomes of other dipteran species.
Results
An FPC-based genome wide physical map of the Hessian fly was constructed and anchored to the insect's polytene chromosomes. Bacterial artificial chromosome (BAC) clones corresponding to 12-fold coverage of the Hessian fly genome were fingerprinted, using high information content fingerprinting (HIFC) methodology, and end-sequenced. Fluorescence in situ hybridization (FISH) co-localized two BAC clones from each of the 196 longest contigs on the polytene chromosomes. An additional 70 contigs were positioned using a single FISH probe. The 266 FISH mapped contigs were evenly distributed and covered 60% of the genome (95,668 kb). The ends of the fingerprinted BACs were then sequenced to develop the capacity to create sequenced tagged site (STS) markers on the BACs in the map. Only 3.64% of the BAC-end sequence was composed of transposable elements, helicases, ribosomal repeats, simple sequence repeats, and sequences of low complexity. A relatively large fraction (14.27%) of the BES was comprised of multi-copy gene sequences. Nearly 1% of the end sequence was composed of simple sequence repeats (SSRs).
Conclusion
This physical map provides the foundation for high-resolution genetic mapping, map-based cloning, and assembly of complete genome sequencing data. The results indicate that restriction fragment length heterogeneity in BAC libraries used to construct physical maps lower the length and the depth of the contigs, but is not an absolute barrier to the successful application of the technology. This map will serve as a genomic resource for accelerating gene discovery, genome sequencing, and the assembly of BAC sequences. The Hessian fly BAC-clone assembly, and the names and positions of the BAC clones used in the FISH experiments are publically available at http://genome.purdue.edu/WebAGCoL/Hfly/WebFPC/.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Harris MO, Stuart JJ, Mohan M, Nair S, Lamb RJ, Rohfritsch O: Grasses and gall midges: Plant defense and insect adaptation. Annu Rev Entomol. 2003, 48: 549-577. 10.1146/annurev.ento.48.091801.112559.
2. Hatchett JH, Gallun RL: Genetics of the ability of the Hessian fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann Entomol Soc Am. 1970, 63 (5): 1400-1407.
3. Bantock C: Cytology: Chromosome elimination in Cecidomyiidae. Nature. 1961, 190: 466-467. 10.1038/190466a0.
4. Bantock CR: Experiments on chromosome elimination in the gall midge, Mayetiola destructor. J Embryol Exp Morph. 1970, 24 (2): 257-286.
5. White MJD: Animal Cytology and Evolution. Cambridge university press. 1973, 3: 516-546.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献