Author:
Kuballa Anna V,Holton Timothy A,Paterson Brian,Elizur Abigail
Abstract
Abstract
Background
Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.
Results
A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.
Conclusions
The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process.
Publisher
Springer Science and Business Media LLC
Reference93 articles.
1. Drach P: Mue et cycle d'intermue chez les crustacés décapodes. Ann Inst Océanogr Monaco. 1939, 19: 103-391.
2. Skinner DM: Moulting and Regeneration. The Biology of Crustacea - Integument, Pigments, and Hormonal Processes. Edited by: Bliss DE. 1985, New York: Academic Press, Inc, 9: 44-128.
3. Chung JS, Dircksen H, Webster SG: A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc Natl Acad Sci USA. 1999, 96 (23): 13103-13107. 10.1073/pnas.96.23.13103.
4. Dillaman R, Hequembourg S, Gay M: Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J Morphol. 2005, 263 (3): 356-374. 10.1002/jmor.10311.
5. Roer RD, Dillaman RM: The structure and calcification of the crustacean cuticle. Am Zool. 1984, 24: 893-909.