Author:
Guo Wangzhen,Cai Caiping,Wang Changbiao,Zhao Liang,Wang Lei,Zhang Tianzhen
Abstract
Abstract
Background
Upland cotton has the highest yield, and accounts for > 95% of world cotton production. Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural, functional, and evolutionary studies of the species. Here, we employed GeneTrek and BAC tagging information approaches to predict the general composition and structure of the allotetraploid cotton genome.
Results
142 BAC sequences from Gossypium hirsutum cv. Maxxa were downloaded http://www.ncbi.nlm.nih.gov and confirmed. These BAC sequence analysis revealed that the tetraploid cotton genome contains over 70,000 candidate genes with duplicated gene copies in homoeologous A- and D-subgenome regions. Gene distribution is uneven, with gene-rich and gene-free regions of the genome. Twenty-one percent of the 142 BACs lacked genes. BAC gene density ranged from 0 to 33.2 per 100 kb, whereas most gene islands contained only one gene with an average of 1.5 genes per island. Retro-elements were found to be a major component, first an enriched LTR/gypsy and second LTR/copia. Most LTR retrotransposons were truncated and in nested structures. In addition, 166 polymorphic loci amplified with SSRs developed from 70 BAC clones were tagged on our backbone genetic map. Seventy-five percent (125/166) of the polymorphic loci were tagged on the D-subgenome. By comprehensively analyzing the molecular size of amplified products among tetraploid G. hirsutum cv. Maxxa, acc. TM-1, and G. barbadense cv. Hai7124, and diploid G. herbaceum var. africanum and G. raimondii, 37 BACs, 12 from the A- and 25 from the D-subgenome, were further anchored to their corresponding subgenome chromosomes. After a large amount of genes sequence comparison from different subgenome BACs, the result showed that introns might have no contribution to different subgenome size in Gossypium.
Conclusion
This study provides us with the first glimpse of cotton genome complexity and serves as a foundation for tetraploid cotton whole genomesequencing in the future.
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Fryxell PA: A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea. 1992, 2: 108-165.
2. Wendel JF, Cronn RC: Polyploidy and the evolutionary history of cotton. Adv Agron. 2003, 78: 139-186.
3. National Cotton Council, USA. [http://www.cotton.org/]
4. Jiang C, Wright RJ, El-Zik KM, Paterson AH: Polyploid formation created unique avenues for response to selection in Gossypium. Proc Natl Acad Sci USA. 1998, 95: 4419-4424.
5. Kohel RJ, Yu J, Park Y-H, Lazo GR: Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica. 2001, 121: 163-172.
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献