Author:
Sanchez-Alberola Neus,Campoy Susana,Barbé Jordi,Erill Ivan
Abstract
Abstract
Background
The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes.
Results
Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids.
Conclusions
Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.
Publisher
Springer Science and Business Media LLC
Reference95 articles.
1. Radman M: Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. Molecular and environmental aspects of mutagenesis. Edited by: Prokash L, Sherman F, Miller M, Lawrence C, Tabor HW: Charles C. 1974, Thomas Publisher, Springfield, IL, 128-142.
2. Walker GC: The SOS response of Escherichia coli. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Edited by: Neidhart FC, Ingram JL, Low KB, Magasanik B, Schaechter M, Umbarger HE. 1987, Washington, D.C.: American Society for Microbiology, 1:
3. Little JW, Mount DW: The SOS regulatory system of Escherichia coli. Cell. 1982, 29: 11-22. 10.1016/0092-8674(82)90085-X.
4. Wertman KF, Mount DW: Nucleotide sequence binding specificity of the LexA repressor of Escherichia coli K-12. Journal of bacteriology. 1985, 163: 376-384.
5. Fernandez De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R: Identification of additional genes belonging to the LexA regulon in Escherichia coli. Molecular microbiology. 2000, 35: 1560-1572.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献