Author:
Carén Helena,Erichsen Jennie,Olsson Linda,Enerbäck Charlotta,Sjöberg Rose-Marie,Abrahamsson Jonas,Kogner Per,Martinsson Tommy
Abstract
Abstract
Background
Neuroblastoma is a very heterogeneous pediatric tumor of the sympathetic nervous system showing clinically significant patterns of genetic alterations. Favorable tumors usually have near-triploid karyotypes with few structural rearrangements. Aggressive stage 4 tumors often have near-diploid or near-tetraploid karyotypes and structural rearrangements. Whole genome approaches for analysis of genome-wide copy number have been used to analyze chromosomal abnormalities in tumor samples. We have used array-based copy number analysis using oligonucleotide single nucleotide polymorphisms (SNP) arrays to analyze the chromosomal structure of a large number of neuroblastoma tumors of different clinical and biological subsets.
Results
Ninety-two neuroblastoma tumors were analyzed with 50 K and/or 250 K SNP arrays from Affymetrix, using CNAG3.0 software. Thirty percent of the tumors harbored 1p deletion, 22% deletion of 11q, 26% had MYCN amplification and 45% 17q gain. Most of the tumors with 1p deletion were found among those with MYCN amplification. Loss of 11q was most commonly seen in tumors without MYCN amplification. In the case of MYCN amplification, two types were identified. One type displayed simple continuous amplicons; the other type harbored more complex rearrangements. MYCN was the only common gene in all cases with amplification. Complex amplification on chromosome 12 was detected in two tumors and three different overlapping regions of amplification were identified. Two regions with homozygous deletions, four cases with CDKN2A deletions in 9p and one case with deletion on 3p (the gene RBMS3) were also detected in the tumors.
Conclusion
SNP arrays provide useful tools for high-resolution characterization of significant chromosomal rearrangements in neuroblastoma tumors. The mapping arrays from Affymetrix provide both copy number and allele-specific information at a resolution of 10–12 kb. Chromosome 9p, especially the gene CDKN2A, is subject to homozygous (four cases) and heterozygous deletions (five cases) in neuroblastoma tumors.
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Gilbert F, Feder M, Balaban G, Brangman D, Lurie DK, Podolsky R, Rinaldt V, Vinikoor N, Weisband J: Human neuroblastomas and abnormalities of chromosomes 1 and 17. Cancer Res. 1984, 44 (11): 5444-5449.
2. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J: Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature. 1983, 305 (5931): 245-248. 10.1038/305245a0.
3. Srivatsan ES, Ying KL, Seeger RC: Deletion of chromosome 11 and of 14q sequences in neuroblastoma. Genes Chromosomes Cancer. 1993, 7 (1): 32-37. 10.1002/gcc.2870070106.
4. Suzuki T, Yokota J, Mugishima H, Okabe I, Ookuni M, Sugimura T, Terada M: Frequent loss of heterozygosity on chromosome 14q in neuroblastoma. Cancer Res. 1989, 49 (5): 1095-1098.
5. Brodeur GM: Neuroblastoma: biological insights into a clinical enigma. Nature reviews. 2003, 3 (3): 203-216. 10.1038/nrc1014.
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献