Incorporation of genetic model parameters for cost-effective designs of genetic association studies using DNA pooling

Author:

Ji Fei,Finch Stephen J,Haynes Chad,Mendell Nancy R,Gordon Derek

Abstract

Abstract Background Studies of association methods using DNA pooling of single nucleotide polymorphisms (SNPs) have focused primarily on the effects of "machine-error", number of replicates, and the size of the pool. We use the non-centrality parameter (NCP) for the analysis of variance test to compute the approximate power for genetic association tests with DNA pooling data on cases and controls. We incorporate genetic model parameters into the computation of the NCP. Parameters involved in the power calculation are disease allele frequency, frequency of the marker SNP allele in coupling with the disease locus, disease prevalence, genotype relative risk, sample size, genetic model, number of pools, number of replicates of each pool, and the proportion of variance of the pooled frequency estimate due to machine variability. We compute power for different settings of number of replicates and total number of genotypings when the genetic model parameters are fixed. Several significance levels are considered, including stringent significance levels (due to the increasing popularity of 100 K and 500 K SNP "chip" data). We use a factorial design with two to four settings of each parameter and multiple regression analysis to assess which parameters most significantly affect power. Results The power can increase substantially as the genotyping number increases. For a fixed number of genotypings, the power is a function of the number of replicates of each pool such that there is a setting with maximum power. The four most significant parameters affecting power for association are: (1) genotype relative risk, (2) genetic model, (3) sample size, and (4) the interaction term between disease and SNP marker allele probabilities. Conclusion For a fixed number of genotypings, there is an optimal number of replicates of each pool that increases as the number of genotypings increases. Power is not substantially reduced when the number of replicates is close to but not equal to the optimal setting.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3