End-sequencing and characterization of silkworm (Bombyx mori) bacterial artificial chromosome libraries
-
Published:2007-09-07
Issue:1
Volume:8
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Suetsugu Yoshitaka,Minami Hiroshi,Shimomura Michihiko,Sasanuma Shun-ichi,Narukawa Junko,Mita Kazuei,Yamamoto Kimiko
Abstract
Abstract
Background
We performed large-scale bacterial artificial chromosome (BAC) end-sequencing of two BAC libraries (an Eco RI- and a Bam HI-digested library) and conducted an in silico analysis to characterize the obtained sequence data, to make them a useful resource for genomic research on the silkworm (Bombyx mori).
Results
More than 94000 BAC end sequences (BESs), comprising more than 55 Mbp and covering about 10.4% of the silkworm genome, were sequenced. Repeat-sequence analysis with known repeat sequences indicated that the long interspersed nuclear elements (LINEs) were abundant in Bam HI BESs, whereas DNA-type elements were abundant in Eco RI BESs. Repeat-sequence analysis revealed that the abundance of LINEs might be due to a GC bias of the restriction sites and that the GC content of silkworm LINEs was higher than that of mammalian LINEs. In a BLAST-based sequence analysis of the BESs against two available whole-genome shotgun sequence data sets, more than 70% of the BESs had a BLAST hit with an identity of ≥ 99%. About 14% of Eco RI BESs and about 8% of Bam HI BESs were paired-end clones with unique sequences at both ends. Cluster analysis of the BESs clarified the proportion of BESs containing protein-coding regions.
Conclusion
As a result of this characterization, the identified BESs will be a valuable resource for genomic research on Bombyx mori, for example, as a base for construction of a BAC-based physical map. The use of multiple complementary BAC libraries constructed with different restriction enzymes also makes the BESs a more valuable genomic resource. The GenBank accession numbers of the obtained end sequences are DE283657–DE378560.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference53 articles.
1. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura : Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol. 2002, 21: 52-56. 10.1038/nbt771. 2. Chen J, Wu XF, Zhang YZ: Expression, purification and characterization of human GM-CSF using silkworm pupae (Bombyx mori) as a bioreactor. J Biotechnol. 2006, 123: 236-247. 10.1016/j.jbiotec.2005.11.015. 3. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J: Silk-based biomaterials. Biomaterials. 2003, 24: 401-416. 10.1016/S0142-9612(02)00353-8. 4. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T: The genome sequence of silkworm, Bombyx mori. DNA Res. 2004, 11: 27-35. 10.1093/dnares/11.1.27. 5. Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H: A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004, 306: 1937-1940. 10.1126/science.1102210.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|